Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_3_a10, author = {C. Liaw and S. Treil}, title = {Preservation of absolutely continuous spectrum for contractive operators}, journal = {Algebra i analiz}, pages = {232--251}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a10/} }
C. Liaw; S. Treil. Preservation of absolutely continuous spectrum for contractive operators. Algebra i analiz, Tome 34 (2022) no. 3, pp. 232-251. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a10/
[1] Aleksandrov A. B., “Vnutrennie funktsii i svyazannye s nimi prostranstva psevdoprodolzhimykh funktsii”, Zap. nauch. semin. LOMI, 170, 1989, 7–33
[2] Birman M. Sh., Krein M. G., “K teorii volnovykh operatorov i operatorov rasseyaniya”, Dokl. AN SSSR, 144:3 (1962), 475–478 | Zbl | Zbl
[3] Cima J. A., Matheson A. L., Ross W. T., The Cauchy transform, Math. Surveys Monogr., 125, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Kuroda S. T., “Perturbation of continuous spectra by unbounded operators. I”, J. Math. Soc. Japan, 11 (1959), 246–262 | MR | MR
[5] Kuroda S. T., “Perturbation of continuous spectra by unbounded operators. II”, J. Math. Soc. Japan, 12 (1960), 243–257 | MR | Zbl | MR | Zbl
[6] Kuroda S. T., “An abstract stationary approach to perturbation of continuous spectra and scattering theory”, J. Anal. Math., 20 (1967), 57–117 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Liaw C., Treil S., “General Clark model for finite-rank perturbations”, Anal. PDE, 12:2 (2019), 449–492 | DOI | MR | Zbl | DOI | MR | Zbl
[8] Naboko S. N., “Volnovye operatory dlya nesamosopryazhennykh operatorov i funktsionalnaya model”, Zap. nauch. semin. LOMI, 69, 1977, 129–135 | MR | Zbl | MR | Zbl
[9] Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Tr. Mat. in-ta AN SSSR, 147, 1980, 86–114 | Zbl | Zbl
[10] Naboko S. N., “Ob usloviyakh suschestvovaniya volnovykh operatorov v nesamosopryazhennom sluchae”, Probl. mat. fiz., 12, LGU, L., 1987
[11] Nikolskii N. K., “O vozmuscheniyakh spektra unitarnykh operatorov”, Mat. zametki, 5:3 (1969), 207–211 | Zbl | Zbl
[12] Nikolski N., Operators, functions, and systems: an easy reading, v. 2, Math. Surveys Monogr., 93, Model operators and systems, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl | MR | Zbl
[13] Nikolski N., Vasyunin V., “Elements of spectral theory in terms of the free function model. I. Basic constructions”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302 | MR | Zbl | MR | Zbl
[14] Solomyak B. M., “Teoriya rasseyaniya dlya pochti unitarnykh operatorov i funktsionalnaya model”, Zap. nauch. semin. LOMI, 178, 1989, 92–119 | Zbl | Zbl
[15] Sz.-Nagy B., Foiaş C., Bercovici H., Kérchy L., Harmonic analysis of operators on Hilbert space, Universitext, Second ed., Springer, New York, 2010 | MR | Zbl | MR | Zbl
[16] Takahashi K., Uchiyama M., “Every $C_{00}$ contraction with Hilbert–Schmidt defect operator is of class $C_0$”, J. Operator Theory, 10:2 (1983), 331–335 | MR | Zbl | MR | Zbl
[17] TikhonovA.S., “Absolyutno nepreryvnyi spektr i teoriya rasseyaniya dlya operatorov so spektrom na krivoi”, Algebra i analiz, 7:1 (1995), 200–220
[18] Woodbury M. A., Inverting modified matrices, Statistical Research Group, Memo. Rep., No 42, Princeton Univ., Princeton, NJ, 1950 | MR | MR