Preservation of absolutely continuous spectrum for contractive operators
Algebra i analiz, Tome 34 (2022) no. 3, pp. 232-251

Voir la notice de l'article provenant de la source Math-Net.Ru

Contractive operators $T$ that are trace class perturbations of a unitary operator $U$ are treated. It is proved that the dimension functions of the absolutely continuous spectrum of $T$, $T^* ,$ and of $U$ coincide. In particular, if $U$ has a purely singular spectrum, then the characteristic function $\theta$ of $T$ is a two-sided inner function, i.e., $\theta(\xi)$ is unitary a.e. on $\mathbb{T}$. Some corollaries to this result are related to investigations of the asymptotic stability of the operators $T$ and $T^*$ (the convergence $T^n\to 0$ and $(T^*)^n\to 0$, respectively, in the strong operator topology). The proof is based on an explicit computation of the characteristic function.
Keywords: contractive operators, dimension function, absolutely continuous spectrum.
Mots-clés : Trace class perturbations
@article{AA_2022_34_3_a10,
     author = {C. Liaw and S. Treil},
     title = {Preservation of absolutely continuous spectrum for contractive operators},
     journal = {Algebra i analiz},
     pages = {232--251},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_3_a10/}
}
TY  - JOUR
AU  - C. Liaw
AU  - S. Treil
TI  - Preservation of absolutely continuous spectrum for contractive operators
JO  - Algebra i analiz
PY  - 2022
SP  - 232
EP  - 251
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_3_a10/
LA  - en
ID  - AA_2022_34_3_a10
ER  - 
%0 Journal Article
%A C. Liaw
%A S. Treil
%T Preservation of absolutely continuous spectrum for contractive operators
%J Algebra i analiz
%D 2022
%P 232-251
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_3_a10/
%G en
%F AA_2022_34_3_a10
C. Liaw; S. Treil. Preservation of absolutely continuous spectrum for contractive operators. Algebra i analiz, Tome 34 (2022) no. 3, pp. 232-251. http://geodesic.mathdoc.fr/item/AA_2022_34_3_a10/

[1] Aleksandrov A. B., “Vnutrennie funktsii i svyazannye s nimi prostranstva psevdoprodolzhimykh funktsii”, Zap. nauch. semin. LOMI, 170, 1989, 7–33

[2] Birman M. Sh., Krein M. G., “K teorii volnovykh operatorov i operatorov rasseyaniya”, Dokl. AN SSSR, 144:3 (1962), 475–478 | Zbl | Zbl

[3] Cima J. A., Matheson A. L., Ross W. T., The Cauchy transform, Math. Surveys Monogr., 125, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Kuroda S. T., “Perturbation of continuous spectra by unbounded operators. I”, J. Math. Soc. Japan, 11 (1959), 246–262 | MR | MR

[5] Kuroda S. T., “Perturbation of continuous spectra by unbounded operators. II”, J. Math. Soc. Japan, 12 (1960), 243–257 | MR | Zbl | MR | Zbl

[6] Kuroda S. T., “An abstract stationary approach to perturbation of continuous spectra and scattering theory”, J. Anal. Math., 20 (1967), 57–117 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Liaw C., Treil S., “General Clark model for finite-rank perturbations”, Anal. PDE, 12:2 (2019), 449–492 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Naboko S. N., “Volnovye operatory dlya nesamosopryazhennykh operatorov i funktsionalnaya model”, Zap. nauch. semin. LOMI, 69, 1977, 129–135 | MR | Zbl | MR | Zbl

[9] Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Tr. Mat. in-ta AN SSSR, 147, 1980, 86–114 | Zbl | Zbl

[10] Naboko S. N., “Ob usloviyakh suschestvovaniya volnovykh operatorov v nesamosopryazhennom sluchae”, Probl. mat. fiz., 12, LGU, L., 1987

[11] Nikolskii N. K., “O vozmuscheniyakh spektra unitarnykh operatorov”, Mat. zametki, 5:3 (1969), 207–211 | Zbl | Zbl

[12] Nikolski N., Operators, functions, and systems: an easy reading, v. 2, Math. Surveys Monogr., 93, Model operators and systems, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl | MR | Zbl

[13] Nikolski N., Vasyunin V., “Elements of spectral theory in terms of the free function model. I. Basic constructions”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302 | MR | Zbl | MR | Zbl

[14] Solomyak B. M., “Teoriya rasseyaniya dlya pochti unitarnykh operatorov i funktsionalnaya model”, Zap. nauch. semin. LOMI, 178, 1989, 92–119 | Zbl | Zbl

[15] Sz.-Nagy B., Foiaş C., Bercovici H., Kérchy L., Harmonic analysis of operators on Hilbert space, Universitext, Second ed., Springer, New York, 2010 | MR | Zbl | MR | Zbl

[16] Takahashi K., Uchiyama M., “Every $C_{00}$ contraction with Hilbert–Schmidt defect operator is of class $C_0$”, J. Operator Theory, 10:2 (1983), 331–335 | MR | Zbl | MR | Zbl

[17] TikhonovA.S., “Absolyutno nepreryvnyi spektr i teoriya rasseyaniya dlya operatorov so spektrom na krivoi”, Algebra i analiz, 7:1 (1995), 200–220

[18] Woodbury M. A., Inverting modified matrices, Statistical Research Group, Memo. Rep., No 42, Princeton Univ., Princeton, NJ, 1950 | MR | MR