On the least common multiple of several consecutive values of a polynomial
Algebra i analiz, Tome 34 (2022) no. 2, pp. 231-239

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we prove the periodicity of an arithmetic function that is the quotient of the product of $k+1$ values (where $k \geq 1$) of a polynomial $f \in {\mathbb Z}[x]$ at $k + 1$ consecutive integers ${f(n) f(n + 1) \cdots f(n + k)}$ and the least common multiple of the corresponding integers ${f(n),f(n + 1),\dots,f(n + k)}$. We show that this function is periodic if and only if no difference between two roots of $f$ is a positive integer smaller than or equal to $k$. This implies an asymptotic formula for the least common multiple of $f(n),f(n+1),\dots,f(n+k)$ and extends some earlier results in this area from linear and quadratic polynomials $f$ to polynomials of arbitrary degree $d$. A period in terms of the reduced resultants of $f(x)$ and $f(x+\ell)$, where $1 \leq \ell \leq k$, is given explicitly, as well as few examples of $f$ when the smallest period can be established.
Keywords: least common multiple, reduced resultant, periodic arithmetic function.
@article{AA_2022_34_2_a6,
     author = {A. Dubickas},
     title = {On the least common multiple of several consecutive values of a polynomial},
     journal = {Algebra i analiz},
     pages = {231--239},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a6/}
}
TY  - JOUR
AU  - A. Dubickas
TI  - On the least common multiple of several consecutive values of a polynomial
JO  - Algebra i analiz
PY  - 2022
SP  - 231
EP  - 239
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_2_a6/
LA  - en
ID  - AA_2022_34_2_a6
ER  - 
%0 Journal Article
%A A. Dubickas
%T On the least common multiple of several consecutive values of a polynomial
%J Algebra i analiz
%D 2022
%P 231-239
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_2_a6/
%G en
%F AA_2022_34_2_a6
A. Dubickas. On the least common multiple of several consecutive values of a polynomial. Algebra i analiz, Tome 34 (2022) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a6/

[1] Bateman P., Kalb J., Stenger A., “A limit involving least common multiples”, Amer. Math. Monthly, 109 (2002), 393–394 | DOI | Zbl | DOI | Zbl

[2] Chebyshev P. L., “Mémoire sur les nombres premiers”, J. Math. Pures Appl., 17 (1852), 366–390

[3] Cilleruelo J., “The least common multiple of a quadratic sequence”, Compos. Math., 147:4 (2011), 1129–1150 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Dubickas A., Smyth C. J., “Variations on the theme of Hilbert's Theorem $90$”, Glasgow Math. J., 44:3 (2002), 435–441 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Farhi B., “Nontrivial lower bounds for the least common multiple of some finite sequences of integers”, J. Number Theory, 125:2 (2007), 393–411 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Farhi B., Kane D., “New results on the least common multiple of consecutive integers”, Proc. Amer. Math. Soc., 137:6 (2009), 1933–1939 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Frenkel P. E., Pelikán J., “On the greatest common divisor of the value of two polynomials”, Amer. Math. Monthly, 124:5 (2017), 446–450 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Frenkel P. E., Zábrádi G., “Estimating the greatest common divisor of the value of two polynomials”, Int. J. Number Theory, 14:9 (2018), 2543–2554 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Hong S., Qian G., “The least common multiple of consecutive arithmetic progression terms”, Proc. Edinb. Math. Soc. (2), 54:2 (2011), 431–441 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Hong S., Qian G., “The least common multiple of consecutive quadratic progression terms”, Forum Math., 27:6 (2015), 3335–3396 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Hua L.-K., Introduction to number theory, Springer-Verlag, Berlin, 1982 | MR | Zbl | MR | Zbl

[12] Khomovsky D. I., “On the relationship between the number of solutions of congruence systems and the resultant of two polynomials”, Integers, 16 (2016), A41, 7 pp. | MR | Zbl | MR | Zbl

[13] Maynard J., Rudnick Z., “A lower bound on the LCM of polynomial sequences”, Riv. Math. Univ. Parma (N.S.), 12 (2021), 143–150 | MR | Zbl | MR | Zbl

[14] M. Nair, “On Chebyshev-type inequalities for primes”, Amer. Math. Monthly, 89:2 (1982), 126–129 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Qian G., Tan Q., Hong S., “The least common multiple of consecutive terms in a quadratic progression”, Bull. Aust. Math. Soc., 86:3 (2012), 389–404 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Rudnick Z., Zehavi S., “On Cilleruelo's conjecture for the least common multiple of polynomial sequences”, Rev. Mat. Iberoam., 37:4 (2021), 1441–1458 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Rué J., Šarka P., Zumalacárregui A., “On the error term of the logarithm of the lcm of a quadratic sequence”, J. Théor. Nombres Bordeaux, 25:2 (2013), 457–470 | DOI | MR | Zbl | DOI | MR | Zbl

[18] The prime glossary, http://primes.utm.edu/glossary/page.php?sort=LawOfSmall

[19] The resultant and the ideal generated by two polynomials in ${\mathbb Z}[x]$, Question 17501 at mathoverflow https://mathoverflow.net/questions/17501/