Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_2_a6, author = {A. Dubickas}, title = {On the least common multiple of several consecutive values of a polynomial}, journal = {Algebra i analiz}, pages = {231--239}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a6/} }
A. Dubickas. On the least common multiple of several consecutive values of a polynomial. Algebra i analiz, Tome 34 (2022) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a6/
[1] Bateman P., Kalb J., Stenger A., “A limit involving least common multiples”, Amer. Math. Monthly, 109 (2002), 393–394 | DOI | Zbl | DOI | Zbl
[2] Chebyshev P. L., “Mémoire sur les nombres premiers”, J. Math. Pures Appl., 17 (1852), 366–390
[3] Cilleruelo J., “The least common multiple of a quadratic sequence”, Compos. Math., 147:4 (2011), 1129–1150 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Dubickas A., Smyth C. J., “Variations on the theme of Hilbert's Theorem $90$”, Glasgow Math. J., 44:3 (2002), 435–441 | DOI | MR | Zbl | DOI | MR | Zbl
[5] Farhi B., “Nontrivial lower bounds for the least common multiple of some finite sequences of integers”, J. Number Theory, 125:2 (2007), 393–411 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Farhi B., Kane D., “New results on the least common multiple of consecutive integers”, Proc. Amer. Math. Soc., 137:6 (2009), 1933–1939 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Frenkel P. E., Pelikán J., “On the greatest common divisor of the value of two polynomials”, Amer. Math. Monthly, 124:5 (2017), 446–450 | DOI | MR | Zbl | DOI | MR | Zbl
[8] Frenkel P. E., Zábrádi G., “Estimating the greatest common divisor of the value of two polynomials”, Int. J. Number Theory, 14:9 (2018), 2543–2554 | DOI | MR | Zbl | DOI | MR | Zbl
[9] Hong S., Qian G., “The least common multiple of consecutive arithmetic progression terms”, Proc. Edinb. Math. Soc. (2), 54:2 (2011), 431–441 | DOI | MR | Zbl | DOI | MR | Zbl
[10] Hong S., Qian G., “The least common multiple of consecutive quadratic progression terms”, Forum Math., 27:6 (2015), 3335–3396 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Hua L.-K., Introduction to number theory, Springer-Verlag, Berlin, 1982 | MR | Zbl | MR | Zbl
[12] Khomovsky D. I., “On the relationship between the number of solutions of congruence systems and the resultant of two polynomials”, Integers, 16 (2016), A41, 7 pp. | MR | Zbl | MR | Zbl
[13] Maynard J., Rudnick Z., “A lower bound on the LCM of polynomial sequences”, Riv. Math. Univ. Parma (N.S.), 12 (2021), 143–150 | MR | Zbl | MR | Zbl
[14] M. Nair, “On Chebyshev-type inequalities for primes”, Amer. Math. Monthly, 89:2 (1982), 126–129 | DOI | MR | Zbl | DOI | MR | Zbl
[15] Qian G., Tan Q., Hong S., “The least common multiple of consecutive terms in a quadratic progression”, Bull. Aust. Math. Soc., 86:3 (2012), 389–404 | DOI | MR | Zbl | DOI | MR | Zbl
[16] Rudnick Z., Zehavi S., “On Cilleruelo's conjecture for the least common multiple of polynomial sequences”, Rev. Mat. Iberoam., 37:4 (2021), 1441–1458 | DOI | MR | Zbl | DOI | MR | Zbl
[17] Rué J., Šarka P., Zumalacárregui A., “On the error term of the logarithm of the lcm of a quadratic sequence”, J. Théor. Nombres Bordeaux, 25:2 (2013), 457–470 | DOI | MR | Zbl | DOI | MR | Zbl
[18] The prime glossary, http://primes.utm.edu/glossary/page.php?sort=LawOfSmall
[19] The resultant and the ideal generated by two polynomials in ${\mathbb Z}[x]$, Question 17501 at mathoverflow https://mathoverflow.net/questions/17501/