Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$
Algebra i analiz, Tome 34 (2022) no. 2, pp. 185-230

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a finite-dimensional, commutative algebra over $\mathbb{R}$ or $\mathbb{C}$. We extend the notion of $A$-differentiable functions on $A$ and develop a theory of $A$-differentiable functions on finitely generated $A$-modules. Let $U$ be an open, bounded and convex subset of such a module. We give an explicit formula for $A$-differentiable functions on $U$ of prescribed class of differentiability in terms of real or complex differentiable functions, in the case when $A$ is singly generated and the module is arbitrary and in the case when $A$ is arbitrary and the module is free. We prove that certain components of $A$-differentiable function are of higher differentiability than the function itself. Let $\mathsf{M}$ be a constant, square matrix. Using the formula mentioned above, we find a complete description of solutions of the equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$. We formulate the boundary value problem for generalized Laplace equations $\mathsf{M}\,\nabla^2 v=\nabla^2v \mathsf{M}^{\mathsf{T}}$ and prove that for given boundary data there exists a unique solution, for which we provide a formula.
Keywords: differentiable functions on algebras, generalised analytic functions, generalised Laplace equations, Banach algebra of $A$-differentiable functions.
@article{AA_2022_34_2_a5,
     author = {K. J. Ciosmak},
     title = {Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$},
     journal = {Algebra i analiz},
     pages = {185--230},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a5/}
}
TY  - JOUR
AU  - K. J. Ciosmak
TI  - Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$
JO  - Algebra i analiz
PY  - 2022
SP  - 185
EP  - 230
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_2_a5/
LA  - en
ID  - AA_2022_34_2_a5
ER  - 
%0 Journal Article
%A K. J. Ciosmak
%T Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$
%J Algebra i analiz
%D 2022
%P 185-230
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_2_a5/
%G en
%F AA_2022_34_2_a5
K. J. Ciosmak. Differentiable functions on modules and equation $\mathrm{grad}\,(w)=\mathsf{M}\,\mathrm{grad}\,(v)$. Algebra i analiz, Tome 34 (2022) no. 2, pp. 185-230. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a5/

[1] Gadea P. M., Muñoz Masqué J., “$A$-differentiability and $A$-analyticity”, Proc. Amer. Math. Soc., 124:5 (1996), 1437–1443 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Jacobson N., Basic algebra, v. I, 2nd ed., W. H. Freeman and Co., New York, 1985 | MR | Zbl | MR | Zbl

[3] Jacobson N., Basic algebra, v. II, 2nd ed., W. H. Freeman and Co., New York, 1989 | MR | Zbl | MR | Zbl

[4] Jodeit M., Olver P. J., “On the equation $\mathrm{grad}\, f=\mathsf{M} \mathrm{grad}\, g$”, Proc. Roy. Soc. Edinburdh Sect. A, 116:3-4 (1990), 341–358 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Jonasson J., “Multiplication for solutions of the equation $\mathrm{grad}\, f = \mathsf{M} \mathrm{grad}\, g$”, J. Geom. Phys., 59:10 (2009), 1412–1430 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Ketchum P. W., “Analytic functions of hypercomplex variables”, Trans. Amer. Math. Soc., 30:4 (1928), 641–667 | DOI | MR | DOI | MR

[7] Krantz S. G., Parks H. R., A primer of real analytic functions, Basler Lehrbücher, 4, Birkhäuser Verlag, Basel, 1992 | MR | Zbl | MR | Zbl

[8] Lee J. M., Introduction to smooth manifolds, Grad. Texts in Math., 218, Springer-Verlag, New York, 2003 | DOI | MR | DOI | MR

[9] Mazur S., Orlicz W., “Grundlegende Eigenschaften der polynomischen Operationen. Erste Mitteilung”, Stud. Math., 5:1 (1934), 50–68 | DOI | Zbl | DOI | Zbl

[10] Rosculeţ M. N., Funcţii monogene pe algebre comutative, Editura Acad. Republ. Soc. România, Bucharest, 1975 | MR | Zbl | MR | Zbl

[11] Skowroński A., Yamagata K., Frobenius algebras, v. I, EMS Textbooks in Math., Basic representation theory, European Math. Soc. (EMS), Zurich, 2011 | MR | Zbl | MR | Zbl

[12] Waterhouse W. C., “Analyzing some generalized analytic functions”, Exposition. Math., 10:2 (1992), 183–192 | MR | Zbl | MR | Zbl

[13] Waterhouse W. C., “Differentiable functions on algebras and the equation $\mathrm{grad}\, (w)=\mathsf{M}\,\mathrm{grad}\, (v)$”, Proc. Roy. Soc. Edinburgh Sect. A, 122:3-4 (1992), 353–361 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Żelazko W., Banach algebras, Elsevier Publ. Co., Amsterdam, 1973 | MR | MR