The Nevanlinna characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions
Algebra i analiz, Tome 34 (2022) no. 2, pp. 152-184

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a meromorphic function on the complex plane $\mathbb C$ with Nevanlinna characteristic $T(r,f)$ and with maximal radial characteristic $\ln M(t,f)$, where $M(t,f)$ is the maximum of $|f|$ on the circle centered at zero and of radius $t$. �A series of known and widely used results make it possible to obtain upper estimates the integrals of $\ln M (t,f)$ over sets $E$ On the intervals $[0,r]$ in terms of $T(r,f)$ and the linear Lebesgue measure on $E$. In the paper, similar estimates are obtained for Lebesgue�Stieltjes of $\ln M(t,f)$ with respect to a monotone increasing function $m$, where the sets $E$ of nonconstancy for $m$ may be of fractal nature. It turns out to be possible to obtain nontrivial estimates in terms of the Hausdorff $h$-content and Hausdorff $h$-measure of $E$, and also in terms of their $d$-dimensional power versions with $d\in (0,1]$. All previously known estimates correspond to the extreme case of $d=1$ and an absolutely continuous function $m$ whose density belongs to $L^p$ with $p>1$. A substantial part of the exposition is presented at once for the differences of subharmonic or $\delta$-subharmonic functions on disks centered at zero, moreover, explicit estimational constants are found. The only restriction in the main theorem is that the modulus of continuity of $m$ must satisfy the Dini condition at zero, and this is essential, as is shown by a counterexample.
Keywords: meromorphic function, $\delta$-subharmonic function, Nevanlinna characteristic, Hausdorff measure and Hausdorff content, modulus of continuity
Mots-clés : Dini condition.
@article{AA_2022_34_2_a4,
     author = {B. N. Khabibullin},
     title = {The {Nevanlinna} characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions},
     journal = {Algebra i analiz},
     pages = {152--184},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - The Nevanlinna characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions
JO  - Algebra i analiz
PY  - 2022
SP  - 152
EP  - 184
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/
LA  - ru
ID  - AA_2022_34_2_a4
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T The Nevanlinna characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions
%J Algebra i analiz
%D 2022
%P 152-184
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/
%G ru
%F AA_2022_34_2_a4
B. N. Khabibullin. The Nevanlinna characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions. Algebra i analiz, Tome 34 (2022) no. 2, pp. 152-184. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/

[1] Nevanlinna R., Le théoremè de Picard–Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929 | MR | MR

[2] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR | MR

[3] Khabibullin B. N., “Integrals of subharmonic functions and their differences with weight over small sets on a ray”, Mat. Stud., 54:2 (2020), 162–171 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Edrei A., Fuchs W. H. J., “Bounds for the number of deficient values of certain classes of meromorphic functions”, Proc. London Math. Soc., 12 (1962), 315–344 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Grishin A. F., Sodin M. L., “Rost po luchu, raspredelenie kornei po argumentam tseloi funktsii konechnogo poryadka i odna teorema edinstvennosti”, Teoriya funkts. funkts. analiz i pril., 50 (1988), 47–61 | Zbl | Zbl

[6] Grishin A. F., Malyutina T. I., “Novye formuly dlya indikatorov subgarmonicheskikh funktsii”, Mat. fiz., anal., geom., 12:1 (2005), 25–72 | Zbl | Zbl

[7] Gabdrakhmanova L. A., Khabibullin B. N., “Odna teorema o malykh intervalakh dlya subgarmonicheskikh funktsii”, Izv. vuzov. Mat., 2020, no. 9, 15–24 | MR | Zbl | MR | Zbl

[8] Ransford Th., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl | MR | Zbl

[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, v. 1, Mir, M., 1980 | MR | MR

[10] Arsove M. G., “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Arsove M. G., “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Grishin A. F., Nguen Van Kuin, Poedintseva I. V., “Teoremy o predstavlenii $\delta$-subgarmonicheskikh funktsii”, Bisnik Kharkiv. nats. univ. Cep. Mat., prikl. mat., mekh., 1133 (2014), 56–75 | Zbl | Zbl

[13] Khabibullin B. N., Rozit A. P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funktsional. anal. i ego pril., 52:1 (2018), 26–42 | MR | Zbl | MR | Zbl

[14] Azarin V., Growth theory of subharmonic functions, Adv. Texts, Birkhäuser, Basel, 2009 | MR | Zbl | MR | Zbl

[15] Karleson L., Izbrannye glavy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971

[16] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987

[17] Rogers C. A., Hausdorff measures, Cambridge Univ. Press, Cambridge, 1970 | MR | Zbl | MR | Zbl

[18] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer, Berlin, 1996 | DOI | MR | DOI | MR

[19] Evans L. K., Gariepi K. F., Teoriya mery i tonkie svoistva funktsii, Nauchn. kniga, Novosibirsk, 2002

[20] Eiderman V. Ya., “Otsenki kartanovskogo tipa dlya potentsialov s yadrom Koshi i s deistvitelnymi yadrami”, Mat. sb., 198:8 (2007), 115–160 | Zbl | Zbl

[21] Volberg A. L., Eiderman V. Ya., “Neodnorodnyi garmonicheskii analiz: 16 let razvitiya”, Uspekhi mat. nauk, 68:6 (2013), 3–58 | MR | Zbl | MR | Zbl

[22] Privalov I. I., “Obobschenie formuly Jensen'a. I”, Izv. AN SSSR. VII ser. Otd. mat. i estestv. nauk, 6-7 (1935), 837–847 | Zbl | Zbl

[23] Privalov I. I., Subgarmonicheskie funktsii, ONTI, M.-L., 1937

[24] Khabibullin B. N., A. V. Shmeleva, “Vymetanie mer i subgarmonicheskikh funktsii na sistemu luchei. I. Klassicheskii sluchai”, Algebra i analiz, 31:1 (2019), 156–210

[25] Aikawa H., Essén M., Potential theory — Selected topics, Lecture Notes in Math., 1633, Springer, Berlin, 1996 | DOI | MR | Zbl | DOI | MR | Zbl