Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_2_a4, author = {B. N. Khabibullin}, title = {The {Nevanlinna} characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions}, journal = {Algebra i analiz}, pages = {152--184}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/} }
TY - JOUR AU - B. N. Khabibullin TI - The Nevanlinna characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions JO - Algebra i analiz PY - 2022 SP - 152 EP - 184 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/ LA - ru ID - AA_2022_34_2_a4 ER -
%0 Journal Article %A B. N. Khabibullin %T The Nevanlinna characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions %J Algebra i analiz %D 2022 %P 152-184 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/ %G ru %F AA_2022_34_2_a4
B. N. Khabibullin. The Nevanlinna characteristic and integral inequalities with maximum radial characteristic for meromorphic functions and for the differences of subharmonic functions. Algebra i analiz, Tome 34 (2022) no. 2, pp. 152-184. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a4/
[1] Nevanlinna R., Le théoremè de Picard–Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929 | MR | MR
[2] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR | MR
[3] Khabibullin B. N., “Integrals of subharmonic functions and their differences with weight over small sets on a ray”, Mat. Stud., 54:2 (2020), 162–171 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Edrei A., Fuchs W. H. J., “Bounds for the number of deficient values of certain classes of meromorphic functions”, Proc. London Math. Soc., 12 (1962), 315–344 | DOI | MR | Zbl | DOI | MR | Zbl
[5] Grishin A. F., Sodin M. L., “Rost po luchu, raspredelenie kornei po argumentam tseloi funktsii konechnogo poryadka i odna teorema edinstvennosti”, Teoriya funkts. funkts. analiz i pril., 50 (1988), 47–61 | Zbl | Zbl
[6] Grishin A. F., Malyutina T. I., “Novye formuly dlya indikatorov subgarmonicheskikh funktsii”, Mat. fiz., anal., geom., 12:1 (2005), 25–72 | Zbl | Zbl
[7] Gabdrakhmanova L. A., Khabibullin B. N., “Odna teorema o malykh intervalakh dlya subgarmonicheskikh funktsii”, Izv. vuzov. Mat., 2020, no. 9, 15–24 | MR | Zbl | MR | Zbl
[8] Ransford Th., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl | MR | Zbl
[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, v. 1, Mir, M., 1980 | MR | MR
[10] Arsove M. G., “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Arsove M. G., “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Grishin A. F., Nguen Van Kuin, Poedintseva I. V., “Teoremy o predstavlenii $\delta$-subgarmonicheskikh funktsii”, Bisnik Kharkiv. nats. univ. Cep. Mat., prikl. mat., mekh., 1133 (2014), 56–75 | Zbl | Zbl
[13] Khabibullin B. N., Rozit A. P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funktsional. anal. i ego pril., 52:1 (2018), 26–42 | MR | Zbl | MR | Zbl
[14] Azarin V., Growth theory of subharmonic functions, Adv. Texts, Birkhäuser, Basel, 2009 | MR | Zbl | MR | Zbl
[15] Karleson L., Izbrannye glavy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971
[16] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987
[17] Rogers C. A., Hausdorff measures, Cambridge Univ. Press, Cambridge, 1970 | MR | Zbl | MR | Zbl
[18] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer, Berlin, 1996 | DOI | MR | DOI | MR
[19] Evans L. K., Gariepi K. F., Teoriya mery i tonkie svoistva funktsii, Nauchn. kniga, Novosibirsk, 2002
[20] Eiderman V. Ya., “Otsenki kartanovskogo tipa dlya potentsialov s yadrom Koshi i s deistvitelnymi yadrami”, Mat. sb., 198:8 (2007), 115–160 | Zbl | Zbl
[21] Volberg A. L., Eiderman V. Ya., “Neodnorodnyi garmonicheskii analiz: 16 let razvitiya”, Uspekhi mat. nauk, 68:6 (2013), 3–58 | MR | Zbl | MR | Zbl
[22] Privalov I. I., “Obobschenie formuly Jensen'a. I”, Izv. AN SSSR. VII ser. Otd. mat. i estestv. nauk, 6-7 (1935), 837–847 | Zbl | Zbl
[23] Privalov I. I., Subgarmonicheskie funktsii, ONTI, M.-L., 1937
[24] Khabibullin B. N., A. V. Shmeleva, “Vymetanie mer i subgarmonicheskikh funktsii na sistemu luchei. I. Klassicheskii sluchai”, Algebra i analiz, 31:1 (2019), 156–210
[25] Aikawa H., Essén M., Potential theory — Selected topics, Lecture Notes in Math., 1633, Springer, Berlin, 1996 | DOI | MR | Zbl | DOI | MR | Zbl