Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport
Algebra i analiz, Tome 34 (2022) no. 2, pp. 118-151

Voir la notice de l'article provenant de la source Math-Net.Ru

A sign interlacing phenomenon for Bessel sequences, frames, and Riesz bases $ (u_{k})$ in $ L^{2}$ spaces over the spaces of homogeneous type $ \Omega =(\Omega, \rho, \mu )$ satisfying the doubling/halving conditions is studied. Under some relations among three basic metric-measure parameters of $ \Omega $, we obtain asymptotics for the mass moving norms $ \| u_{k}\| _{KR}$ in the sense of Kantorovich–Rubinstein, as well as for the singular numbers of the Lipschitz and Hajlasz–Sobolev embeddings. Our main observation shows that, quantitatively, the rate of convergence $ \| u_{k}\| _{KR}\to 0$ mostly depends on the Bernstein–Kolmogorov $n$-widths of a certain compact set of Lipschitz functions, and the widths themselves mostly depend on the interplay between geometric doubling and measure doubling/halving numerical parameters. The “more homogeneous” is the space, the sharper are the results.
Keywords: sign interlacing, Kantorovich–Rubinstein (Wasserstein) metrics, Riesz bases, frames, Bessel sequences, geometric doubling condition, measure halving and doubling conditions, $ p$-Schatten classes, Haar-like functions, Hajlasz–Sobolev spaces
Mots-clés : dyadic cubes, Hadamard matrix.
@article{AA_2022_34_2_a3,
     author = {N. Nikolski},
     title = {Three dimensions of metric-measure spaces, {Sobolev} embeddings and optimal sign transport},
     journal = {Algebra i analiz},
     pages = {118--151},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a3/}
}
TY  - JOUR
AU  - N. Nikolski
TI  - Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport
JO  - Algebra i analiz
PY  - 2022
SP  - 118
EP  - 151
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_2_a3/
LA  - en
ID  - AA_2022_34_2_a3
ER  - 
%0 Journal Article
%A N. Nikolski
%T Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport
%J Algebra i analiz
%D 2022
%P 118-151
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_2_a3/
%G en
%F AA_2022_34_2_a3
N. Nikolski. Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport. Algebra i analiz, Tome 34 (2022) no. 2, pp. 118-151. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a3/

[1] Alvarado R., Gorka P., Hajlasz P., “Sobolev embedding for $ M^{1,p}$ spaces is equivalent to a lower bound of the measure”, J. Funct. Anal., 279:7 (2020), 108628, 39 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[2] Bogachev V. I., Kolesnikov A. V., “Zadacha Monzha-Kantorovicha: dostizheniya, svyazi i perspektivy”, Uspekhi mat. nauk, 67:5 (2012), 3–110 | MR | Zbl | MR | Zbl

[3] Bogachev V. I., Kalinin A. N., Popova S. N., “O ravenstve znachenii v zadachakh Monzha i Kantorovicha”, Zap. nauch. semin. POMI, 457, 2017, 53–73

[4] Cheeger J., “Differentiability of Lipschitz functions on metric measure spaces”, Geom. Funct. Anal., 9:3 (1999), 428–517 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Christ M., Lectures on singular integral operators, CBMS Reg. Conf. Ser. Math., 77, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl | MR | Zbl

[6] Coifman R., Weiss G., Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | DOI | MR

[7] Fisk S., Polynomials, roots, and interlacing, 11 mars 2008, arXiv: math/0612833v2

[8] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[9] Gokhberg I. Ts., Markus A. S., “Nekotorye sootnosheniya mezhdu sobstvennymi chislami i matrichnymi elementami lineinykh operatorov”, Mat. sb., 64:4 (1964), 481–496 | Zbl | Zbl

[10] Hajlasz P., “Sobolev spaces on metric-measure spaces”, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003, 173–218 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Hajlasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, no. 688, 2000 | MR | MR

[12] Hytönen T., “A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa”, Publ. Mat., 54:2 (2010), 485–504 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Hytönen T., Kairema A., “Systems of dyadic cubes in a doubling metric space”, Colloq. Math., 126:1 (2012), 1–33 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Jonsson A., Wallin H., “Function spaces on subsets of $ {\mathbb R}^{n}$”, Math. Rep., 2:1 (1984), 221 | MR | Zbl | MR | Zbl

[15] Kahane J.-P., Salem R., Ensembles parfaits et séries trigonométriques, 2nd ed., Hermann, Paris, 1994 | MR | MR

[16] Kairema A., Li J., Pereyra C., Ward L., “Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type”, J. Funct. Anal., 271:7 (2016), 1793–1843 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Kantorovich L. V., “O peremeschenii mass”, Dokl. AN SSSR, 37:7-8 (1942), 227–229

[18] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, Dokl. AN SSSR, 115:6 (1957), 1058–1061 | Zbl | Zbl

[19] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 2-e izd., Nauka, M., 1977 | MR | MR

[20] Keith S., Zhong X., “The Poincaré inequality is an open ended condition”, Ann. of Math. (2), 167:2 (2008), 575–599 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Kellogg O. D., “The oscillations of functions of an orthogonal set”, Amer. J. Math., 38:1 (1916), 1–5 | DOI | MR | Zbl | DOI | MR | Zbl

[22] Meyer Y., Wavelets and operators, Cambridge Stud. Adv. Mat., 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl | MR | Zbl

[23] Nikolski N., Volberg A., “On the sign distribution of Hilbert space frames”, Anal. Math.Phys., 9:3 (2019), 1115–1132 | DOI | MR | Zbl | DOI | MR | Zbl

[24] Nikolski N., Volberg A., Sign intermixing for Riesz bases and frames measured in the Kantorovich–Rubinstein norm, 2021, arXiv: 2011.09411v3 [math.CA]

[25] Pietsch A., Operator ideals, Math. Monogr., 16, VEB Deutscher Verlag Wiss., Berlin, 1978 | MR | Zbl | MR | Zbl

[26] Shanmugalingam N., “Newtonian spaces: an extension of Sobolev spaces to metric measure spaces”, Rev. Mat. Iberoam., 16:2 (2000), 243–279 | DOI | MR | Zbl | DOI | MR | Zbl

[27] Shanmugalingam N., “Sobolev type spaces on metric measure spaces”, Potential theory in Matsue, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006, 77–90 | DOI | MR | Zbl | DOI | MR | Zbl

[28] Villani C., Optimal transport: old and new, Springer, Berlin, 2008 | MR | MR