Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_2_a3, author = {N. Nikolski}, title = {Three dimensions of metric-measure spaces, {Sobolev} embeddings and optimal sign transport}, journal = {Algebra i analiz}, pages = {118--151}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a3/} }
N. Nikolski. Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport. Algebra i analiz, Tome 34 (2022) no. 2, pp. 118-151. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a3/
[1] Alvarado R., Gorka P., Hajlasz P., “Sobolev embedding for $ M^{1,p}$ spaces is equivalent to a lower bound of the measure”, J. Funct. Anal., 279:7 (2020), 108628, 39 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[2] Bogachev V. I., Kolesnikov A. V., “Zadacha Monzha-Kantorovicha: dostizheniya, svyazi i perspektivy”, Uspekhi mat. nauk, 67:5 (2012), 3–110 | MR | Zbl | MR | Zbl
[3] Bogachev V. I., Kalinin A. N., Popova S. N., “O ravenstve znachenii v zadachakh Monzha i Kantorovicha”, Zap. nauch. semin. POMI, 457, 2017, 53–73
[4] Cheeger J., “Differentiability of Lipschitz functions on metric measure spaces”, Geom. Funct. Anal., 9:3 (1999), 428–517 | DOI | MR | Zbl | DOI | MR | Zbl
[5] Christ M., Lectures on singular integral operators, CBMS Reg. Conf. Ser. Math., 77, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl | MR | Zbl
[6] Coifman R., Weiss G., Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | DOI | MR
[7] Fisk S., Polynomials, roots, and interlacing, 11 mars 2008, arXiv: math/0612833v2
[8] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965
[9] Gokhberg I. Ts., Markus A. S., “Nekotorye sootnosheniya mezhdu sobstvennymi chislami i matrichnymi elementami lineinykh operatorov”, Mat. sb., 64:4 (1964), 481–496 | Zbl | Zbl
[10] Hajlasz P., “Sobolev spaces on metric-measure spaces”, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003, 173–218 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Hajlasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, no. 688, 2000 | MR | MR
[12] Hytönen T., “A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa”, Publ. Mat., 54:2 (2010), 485–504 | DOI | MR | Zbl | DOI | MR | Zbl
[13] Hytönen T., Kairema A., “Systems of dyadic cubes in a doubling metric space”, Colloq. Math., 126:1 (2012), 1–33 | DOI | MR | Zbl | DOI | MR | Zbl
[14] Jonsson A., Wallin H., “Function spaces on subsets of $ {\mathbb R}^{n}$”, Math. Rep., 2:1 (1984), 221 | MR | Zbl | MR | Zbl
[15] Kahane J.-P., Salem R., Ensembles parfaits et séries trigonométriques, 2nd ed., Hermann, Paris, 1994 | MR | MR
[16] Kairema A., Li J., Pereyra C., Ward L., “Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type”, J. Funct. Anal., 271:7 (2016), 1793–1843 | DOI | MR | Zbl | DOI | MR | Zbl
[17] Kantorovich L. V., “O peremeschenii mass”, Dokl. AN SSSR, 37:7-8 (1942), 227–229
[18] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, Dokl. AN SSSR, 115:6 (1957), 1058–1061 | Zbl | Zbl
[19] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 2-e izd., Nauka, M., 1977 | MR | MR
[20] Keith S., Zhong X., “The Poincaré inequality is an open ended condition”, Ann. of Math. (2), 167:2 (2008), 575–599 | DOI | MR | Zbl | DOI | MR | Zbl
[21] Kellogg O. D., “The oscillations of functions of an orthogonal set”, Amer. J. Math., 38:1 (1916), 1–5 | DOI | MR | Zbl | DOI | MR | Zbl
[22] Meyer Y., Wavelets and operators, Cambridge Stud. Adv. Mat., 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl | MR | Zbl
[23] Nikolski N., Volberg A., “On the sign distribution of Hilbert space frames”, Anal. Math.Phys., 9:3 (2019), 1115–1132 | DOI | MR | Zbl | DOI | MR | Zbl
[24] Nikolski N., Volberg A., Sign intermixing for Riesz bases and frames measured in the Kantorovich–Rubinstein norm, 2021, arXiv: 2011.09411v3 [math.CA]
[25] Pietsch A., Operator ideals, Math. Monogr., 16, VEB Deutscher Verlag Wiss., Berlin, 1978 | MR | Zbl | MR | Zbl
[26] Shanmugalingam N., “Newtonian spaces: an extension of Sobolev spaces to metric measure spaces”, Rev. Mat. Iberoam., 16:2 (2000), 243–279 | DOI | MR | Zbl | DOI | MR | Zbl
[27] Shanmugalingam N., “Sobolev type spaces on metric measure spaces”, Potential theory in Matsue, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006, 77–90 | DOI | MR | Zbl | DOI | MR | Zbl
[28] Villani C., Optimal transport: old and new, Springer, Berlin, 2008 | MR | MR