Twisted forms of classical groups
Algebra i analiz, Tome 34 (2022) no. 2, pp. 56-94

Voir la notice de l'article provenant de la source Math-Net.Ru

A uniform description is given for the twisted forms of classical reductive group schemes. Such group schemes can be constructed via finite-dimensional algebraic objects, except in the cases of small rank. These objects, augmented odd form algebras, consist of nilpotent groups of class 2 with the action of the ground commutative ring, so we develop a theory of plane descent for them. In addition, classical isotropic reductive groups are described in terms of odd unitary groups up to isogeny.
Keywords: isotropic reductive groups, unitary groups.
@article{AA_2022_34_2_a1,
     author = {E. Yu. Voronetskii},
     title = {Twisted forms of classical groups},
     journal = {Algebra i analiz},
     pages = {56--94},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a1/}
}
TY  - JOUR
AU  - E. Yu. Voronetskii
TI  - Twisted forms of classical groups
JO  - Algebra i analiz
PY  - 2022
SP  - 56
EP  - 94
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_2_a1/
LA  - ru
ID  - AA_2022_34_2_a1
ER  - 
%0 Journal Article
%A E. Yu. Voronetskii
%T Twisted forms of classical groups
%J Algebra i analiz
%D 2022
%P 56-94
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_2_a1/
%G ru
%F AA_2022_34_2_a1
E. Yu. Voronetskii. Twisted forms of classical groups. Algebra i analiz, Tome 34 (2022) no. 2, pp. 56-94. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a1/

[1] Voronetskii E. Yu., “Gruppy, normalizuemye nechetnoi unitarnoi gruppoi”, Algebra i analiz, 31:6 (2019), 38–78 | MR | MR

[2] Petrov V. A., “Nechetnye unitarnye gruppy”, Zap. nauchn. semin. POMI, 305, 2003, 195–225

[3] Petrov V. A., Stavrova A. K., “Elementarnye podgruppy v izotropnykh reduktivnykh gruppakh”, Algebra i analiz, 20:4 (2008), 160–188

[4] Bak A., The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[5] Calmes B., Fasel J., “Groupes classiques”, Autour des schémas en groupes II, Soc. Math. France, 2015, 1–133 | MR | Zbl | MR | Zbl

[6] Bass H., Algebraic K-Theory, W. A. Benjamin, Inc., New York, 1968 | MR | Zbl | MR | Zbl

[7] Conrad B., “Reductive group schemes”, Autour des schémas en groupes, v. I, Panor. Syntheses, 42/43, Soc. Math. France, Paris, 2014, 93–444 | MR | Zbl | MR | Zbl

[8] Demazure M., Grothendieck A., “Schémas en groupes. I-III”, Lecture Notes in Math., 151–153, Springer-Verlag, Berlin, 1970 | MR | Zbl | MR | Zbl

[9] Hartl M., “Quadratic maps between groups”, Georgian Math. J., 16:1 (2009), 55–74 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Knus M.-A., Quadratic and hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Knus M.-A., Merkurjev A., Rost M., Tingol J.-P., The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl | MR | Zbl

[12] Loos O., “Bimodule-valued hermitian and quadratic forms”, Arch. Math. (Basel), 62:2 (1994), 134–142 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Schlichting M., “Higher ${K}$-theory of forms I. From rings to exact categories”, J. Inst. Math. Jussieu, 20:4 (2021), 1205–1273 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Stavrova A., “On the congruence kernel of isotropic groups over rings”, Trans. Amer. Math. Soc., 373:7 (2020), 4585–4626 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Tits J., “Formes quadratiques, groupes orthogonaux et algébres de Clifford”, Invent. Math., 5 (1968), 19–41 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Voronetsky E., “Injective stability for odd unitary ${K}_1$”, J. Group Theory, 23:5 (2020), 781–800 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Voronetsky E., Centrality of odd unitary $\mathrm{K}_2$-functor, 2020, arXiv: 2005.02926

[18] Weil A., “Algebras with involutions and the classical groups”, J. Indian Math. Soc. (N.S.), 24:3 (1960), 589–623 | MR | MR