Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_2_a0, author = {I. Arzhantsev}, title = {Automorphisms of algebraic varieties and infinite transitivity}, journal = {Algebra i analiz}, pages = {1--55}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_2_a0/} }
I. Arzhantsev. Automorphisms of algebraic varieties and infinite transitivity. Algebra i analiz, Tome 34 (2022) no. 2, pp. 1-55. http://geodesic.mathdoc.fr/item/AA_2022_34_2_a0/
[1] Arzhantsev I. V., Zaidenberg M. G., Kuyumzhiyan K. G., “Mnogoobraziya flagov, toricheskie mnogoobraziya i nadstroiki: tri primera beskonechnoi tranzitivnosti”, Mat. sb., 203:7 (2012), 3–30 | MR | Zbl | MR | Zbl
[2] Bodnarchuk Yu. V., “Pro tranzitivnist diï grupi biregulyarnikh avtomorfizmiv afinnikh prostoriv, scho mistyat afinnu pidgrupu”, Dopov. Akad. Nauk Ukraïni, 1995, no. 1, 5–7
[3] Boldyrev I. A., Gaifullin S. A., “Avtomorfizmy nenormalnykh toricheskikh mnogoobrazii”, Mat. zametki, 110:6 (2021), 837–855 | MR | Zbl | MR | Zbl
[4] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. mat., 36:4 (1972), 749–764 | Zbl | Zbl
[5] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Algebraicheskaya geometriya. 4, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309
[6] Gizatullin M. Kh., “Ob affinnykh poverkhnostyakh, popolnyaemykh neosoboi ratsionalnoi krivoi”, Izv. AN SSSR. Ser. mat., 34:4 (1970), 778–802 | MR | Zbl | MR | Zbl
[7] Gizatullin M. Kh., “Kvaziodnorodnye affinnye poverkhnosti”, Izv. AN SSSR. Ser. mat., 35:5 (1971), 1047–1071 | MR | Zbl | MR | Zbl
[8] Gizatullin M. Kh., Danilov V. I., “Primery neodnorodnykh kvaziodnorodnykh poverkhnostei”, Izv. AN SSSR. Ser. mat., 38:1 (1974), 42–58 | Zbl | Zbl
[9] Perepechko A. Yu., “Gibkost affinnykh konusov nad poverkhnostyami del Petstso stepenei $4$ i $5$”, Funktsional. anal. i ego pril., 47:4 (2013), 45–52 | MR | Zbl | MR | Zbl
[10] Popov V. L., “Kvaziodnorodnye affinnye algebraicheskie mnogoobraziya gruppy $\mathrm{SL}(2)$”, Izv. AN SSSR. Ser. mat., 37:4 (1973), 792–832 | Zbl | Zbl
[11] Shafarevich A. A., “Gibkost $S$-mnogoobrazii poluprostykh grupp”, Mat. cb., 208:2 (2017), 121–148 | Zbl | Zbl
[12] Andrist R. B., “Integrable generators of Lie algebras of vector fields on $\mathbb{C}^n$”, Forum Math., 31:4 (2019), 943–49 | DOI | MR | DOI | MR
[13] Andrist R. B., “The density property for Calogero–Moser spaces”, Proc. Amer. Math. Soc., 149:10 (2021), 4207–4218 | DOI | MR | Zbl | DOI | MR | Zbl
[14] Andrist R. B., Ugolini R., “A new notion of tameness”, J. Math. Analysis Appl., 472:1 (2019), 196–215 | DOI | MR | Zbl | DOI | MR | Zbl
[15] Arzhantsev I., “Infinite transitivity and special automorphisms”, Ark. Mat., 56:1 (2018), 1–14 | DOI | MR | Zbl | DOI | MR | Zbl
[16] Arzhantsev I., Derenthal U., Hausen J., Laface A., Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl | MR | Zbl
[17] Arzhantsev I., Flenner H., Kaliman Sh., Kutzschebauch F., Zaidenberg M., “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823 | DOI | MR | Zbl | DOI | MR | Zbl
[18] Arzhantsev I., Flenner H., Kaliman S., Kutzschebauch F., Zaidenberg M., “Infinite transitivity on affine varieties”, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham, 2013, 1–13 | MR | Zbl | MR | Zbl
[19] Arzhantsev I., Gaifullin S., “The automorphism group of a rigid affine variety”, Math. Nachr., 290:5-6 (2017), 662–671 | DOI | MR | Zbl | DOI | MR | Zbl
[20] Arzhantsev I., Kuyumzhiyan K., Zaidenberg M., “Infinite transitivity, finite generation, and Demazure roots”, Adv. Math., 351 (2019), 1–32 | DOI | MR | Zbl | DOI | MR | Zbl
[21] Arzhantsev I., Liendo A., Stasyuk T., “Lie algebras of vertical derivations on semiaffine varieties with torus actions”, J. Pure Appl. Algebra, 225:2 (2021), 106499 | DOI | MR | Zbl | DOI | MR | Zbl
[22] Arzhantsev I., Perepechko A., Suess H., “Infinite transitivity on universal torsors”, J. London Math. Soc. (2), 89:3 (2014), 762–778 | DOI | MR | Zbl | DOI | MR | Zbl
[23] Arzhantsev I., Zaidenberg M., “Tits alternative and highly transitive actions on toric varieties”, Int. Math. Res. Not. IMRN, 2021, 34 pp. | DOI | DOI
[24] Batyrev V., Haddad F., “On the geometry of ${\rm SL}(2)$-equivariant flips”, Moscow Math. J., 2012, no. 4, 621–646 | DOI | MR | DOI | MR
[25] Berest Yu., Eshmatov A., Eshmatov F., “Multitransitivity of Calogero–Moser spaces”, Transform. Groups, 21:1 (2016), 35–50 | DOI | MR | Zbl | DOI | MR | Zbl
[26] Bogomolov F., Karzhemanov I., Kuyumzhiyan K., “Unirationality and existence of infinitely transitive models”, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham, 2013, 77–92 | MR | Zbl | MR | Zbl
[27] Borel A., “Les bouts des espaces homogènes de groupes de Lie”, Ann. Math. (2), 58 (1953), 443–457 | DOI | MR | Zbl | DOI | MR | Zbl
[28] Chaynikov V. V., Properties of hyperbolic groups: free normal subgroups, quasiconvex subgroups and actions of maximal growth, Ph.D. Thesis, Vanderbilt Univ., 2012 | MR | MR
[29] Cheltsov I., Park J., Prokhorov Yu., Zaidenberg M., “Cylinders in Fano varieties”, EMS Surv. Math. Sci., 8:1-2 (2021), 39–105 | DOI | MR | Zbl | DOI | MR | Zbl
[30] Cheltsov I., Park J., Won J., “Cylinders in singular del Pezzo surfaces”, Compos. Math., 152:6 (2016), 1198–1224 | DOI | MR | Zbl | DOI | MR | Zbl
[31] Cheltsov I., Park J., Won J., “Affine cones over smooth cubic surfaces”, J. Eur. Math. Soc. (JEMS), 18:7 (2016), 1537–1564 | DOI | MR | Zbl | DOI | MR | Zbl
[32] Chistopolskaya A., “On nilpotent generators of the special linear Lie algebra”, Linear Algebra Appl., 559 (2018), 73–79 | DOI | MR | Zbl | DOI | MR | Zbl
[33] Colliot-Thélène J.-L., Sansuc J.-J., “Torseurs sous des groupes de type multiplicatif; applications à l'étude des points rationnels de certaines variétés algébriques”, C. R. Acad. Sci. Paris Sér. A-B, 282:18 (1976), A1113–A1116 | MR | MR
[34] Colliot-Thélène J.-L., Sansuc J.-J., “Variétés de premiére descente attachées aux variétés rationnelles”, C. R. Acad. Sci. Paris Sér. A-B, 284:16 (1977), A967–A970 | MR | MR
[35] Cox D. A., “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4 (1995), 17–50 | MR | Zbl | MR | Zbl
[36] Demazure M., “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3 (1970), 507–588 | DOI | MR | Zbl | DOI | MR | Zbl
[37] Dixon J. D., “Most finitely generated permutation groups are free”, Bull. London Math. Soc., 22:3 (1990), 222–226 | DOI | MR | Zbl | DOI | MR | Zbl
[38] Dixon J. D., Mortimer B., Permutation groups, Grad. Texts in Math., 163, Springer-Verlag, New York, 1996 | DOI | MR | Zbl | DOI | MR | Zbl
[39] Dubouloz A., “Completions of normal affine surfaces with a trivial Makar–Limanov invariant”, Michigan Math. J., 52:2 (2004), 289–308 | DOI | MR | Zbl | DOI | MR | Zbl
[40] Dubouloz A., “Flexible bundles over rigid affine surfaces”, Comment. Math. Helv., 90:1 (2015), 121–137 | DOI | MR | Zbl | DOI | MR | Zbl
[41] Flenner H., Kaliman S., Zaidenberg M., “The Gromov–Winkelmann theorem for flexible varieties”, J. Eur. Math. Soc. (JEMS), 18:11 (2016), 2483–2510 | DOI | MR | Zbl | DOI | MR | Zbl
[42] Fima P., Le Maitre F., Moon S., Stalder Y., A characterization of high transitivity for groups acting on trees, arXiv: 2003.11116
[43] Fima P., Moon S., Stalder Y., “Highly transitive actions of groups acting on trees”, Proc. Amer. Math. Soc., 143:12 (2015), 5083–5095 | DOI | MR | Zbl | DOI | MR | Zbl
[44] Forstneric F., Developments in Oka theory since, 2017, arXiv: 2006.07888
[45] Freudenburg G., Algebraic theory of locally nilpotent derivations, Encycl. Math. Sci., 136, Springer-Verlag, Berlin, 2006 | MR | Zbl | MR | Zbl
[46] Furter J.-P., Kraft H., On the geometry of the automorphism group of affine $n$-space, arXiv: 1809.04175
[47] Gaifullin S., On rigidity of trinomial hypersurfaces and factorial trinomial varieties, arXiv: 1902.06136
[48] Gaifullin S., Shafarevich I., “Flexibility of normal affine horospherical varieties”, Proc. Amer. Math. Soc., 147:8 (2019), 3317–3330 | DOI | MR | Zbl | DOI | MR | Zbl
[49] Glass A. M. W., McCleary S. H., “Highly transitive representations of free groups and free products”, Bull. Austral. Math. Soc., 43 (1991), 19–36 | DOI | MR | DOI | MR
[50] Garion S., Glasner Y., “Highly transitive actions of $\text{Out}(F_n)$”, Groups Geom. Dyn., 7:2 (2013), 357–376 | DOI | MR | Zbl | DOI | MR | Zbl
[51] Gromov M., “Oka's principle for holomorphic sections of elliptic bundles”, J. Amer. Math. Soc., 2:4 (1989), 851–897 | MR | Zbl | MR | Zbl
[52] Gunhouse S. V., “Highly transitive representations of free products on the natural numbers”, Arch. Math. (Basel), 58:5 (1992), 435–443 | DOI | MR | Zbl | DOI | MR | Zbl
[53] Hickin K. K., “Highly transitive Jordan representations of free products”, J. London Math. Soc. (2), 46:1 (1992), 81–91 | DOI | MR | Zbl | DOI | MR | Zbl
[54] Hull M., Osin D., “Transitivity degrees of countable groups and acylindrical hyperbolicity”, Israel J. Math., 216:1 (2016), 307–353 | DOI | MR | Zbl | DOI | MR | Zbl
[55] Kaliman S., “Extensions of isomorphisms of subvarieties in flexible varieties”, Transform. Groups, 25:2 (2020), 517–575 | DOI | MR | Zbl | DOI | MR | Zbl
[56] Kaliman S., Kutzschebauch F., “On the present state of the Andersen–Lempert theory”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 85–122 | DOI | MR | Zbl | DOI | MR | Zbl
[57] Kaliman S., Kutzschebauch F., Truong T. T., “On subelliptic manifolds”, Israel J. Math., 228:1 (2018), 229–247 | DOI | MR | Zbl | DOI | MR | Zbl
[58] Kaliman S., Udumyan D., “On automorphisms of flexible varieties”, Adv. Math., 396 (2022), 108112 | DOI | MR | Zbl | DOI | MR | Zbl
[59] Kaliman S., Zaidenberg M., “Affine modifications and affine hypersurfaces with a very transitive automorphism group”, Transform. Groups, 4:1 (1999), 53–95 | DOI | MR | Zbl | DOI | MR | Zbl
[60] Kishimoto T., Prokhorov Yu., Zaidenberg M., “Unipotent group actions on del Pezzo cones”, Algebr. Geom., 1 (2014), 46–56 | DOI | MR | Zbl | DOI | MR | Zbl
[61] Kitroser D., “Highly transitive actions of surface groups”, Proc. Amer. Math. Soc., 140:10 (2012), 3365–3375 | DOI | MR | Zbl | DOI | MR | Zbl
[62] Knop F., “Mehrfach transitive Operationen algebraischer Gruppen”, Arch. Math. (Basel), 41:5 (1983), 438–446 | DOI | MR | Zbl | DOI | MR | Zbl
[63] Kovalenko S., “Transitivity of automorphism groups of Gizatullin surfaces”, Int. Math. Res. Not. IMRN, 21 (2015), 11433–11484 | DOI | MR | Zbl | DOI | MR | Zbl
[64] Kovalenko S., Perepechko A., Zaidenberg M., “On automorphism groups of affine suraces”, Algebraic varieties and automorphism groups, Adv. Stud. Pure Math., 75, Math. Soc. Japan, Tokyo, 2017, 207–286 | DOI | MR | Zbl | DOI | MR | Zbl
[65] Kramer L., “Two-transitive Lie groups”, J. Reine Angew. Math., 563 (2003), 83–113 | MR | Zbl | MR | Zbl
[66] Kutzschebauch F., “Flexibility properties in complex analysis and affine algebraic geometry”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 387–406 | MR | MR
[67] Kuyumzhiyan K., “Infinite transitivity for Calogero–Moser spaces”, Proc. Amer. Math. Soc., 148:9 (2020), 3723–3731 | DOI | MR | Zbl | DOI | MR | Zbl
[68] Kuyumzhiyan K., Mangolte F., “Infinitely transitive actions on real affine suspensions”, J. Pure Appl. Algebra, 216:10 (2012), 2106–2112 | DOI | MR | Zbl | DOI | MR | Zbl
[69] Lárusson F., Truong T. T., “Approximation and interpolation of regular maps from affine varieties to algebraic manifolds”, Math. Scand., 125:2 (2019), 199–209 | DOI | MR | Zbl | DOI | MR | Zbl
[70] Lewis D., Perry K., Straub A., “An algorithmic approach to the polydegree conjecture for plane polynomial automorphisms”, J. Pure Appl. Algebra, 223:12 (2019), 5346–5359 | DOI | MR | Zbl | DOI | MR | Zbl
[71] Liendo A., “Affine $T$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425 | DOI | MR | Zbl | DOI | MR | Zbl
[72] Liendo A., “$\mathbb{G}_a$-actions of fiber type on affine $T$-varieties”, J. Algebra, 324:12 (2010), 3653–3665 | DOI | MR | Zbl | DOI | MR | Zbl
[73] Matsusaka T., “Polarized varieties, fields of moduli and generalized Kummer varieties of polarized abelian varieties”, Amer. J. Math., 80 (1958), 45–82 | DOI | MR | Zbl | DOI | MR | Zbl
[74] McDonough T. P., “A permutation representation of a free group”, Quart. J. Math. Oxford Ser. (2), 28:111 (1977), 353–356 | DOI | MR | Zbl | DOI | MR | Zbl
[75] Michałek M., Perepechko A., Suess H., “Flexible affine cones and flexible coverings”, Math. Z., 290:3-4 (2018), 1457–1478 | DOI | MR | Zbl | DOI | MR | Zbl
[76] Moon S., Stalder Y., “Highly transitive actions of free products”, Algebr. Geom. Topol., 13:1 (2013), 589–607 | DOI | MR | Zbl | DOI | MR | Zbl
[77] Park J., Won J., “Flexible affine cones over del Pezzo surfaces of degree $4$”, Eur. J. Math., 2 (2016), 304–318 | DOI | MR | Zbl | DOI | MR | Zbl
[78] Perepechko A., “Affine cones over cubic surfaces are flexible in codimension one”, Forum Math., 33:2 (2021), 339–348 | DOI | MR | DOI | MR
[79] Popov V., “On the Makar–Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | DOI | MR | Zbl | DOI | MR | Zbl
[80] Popov V., “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2 (2014), 549–568 | DOI | MR | Zbl | DOI | MR | Zbl
[81] Prokhorov Yu., Zaidenberg M., Affine cones over Fano–Mukai fourfolds of genus $10$ are flexible, arXiv: 2005.12092
[82] Reichstein Z., “On automorphisms of matrix invariants”, Trans. Amer. Math. Soc., 340 (1993), 353–371 | DOI | MR | Zbl | DOI | MR | Zbl
[83] Reichstein Z., “On automorphisms of matrix invariants induced from the trace ring”, Linear Algebra Appl., 193 (1993), 51–74 | DOI | MR | Zbl | DOI | MR | Zbl
[84] Rosay J.-P., Rudin W., “Holomorphic maps from $\mathbb{C}^n$ to $\mathbb{C}^n$”, Trans. Amer. Math. Soc., 310:1 (1988), 47–86 | MR | Zbl | MR | Zbl
[85] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl | DOI | MR | Zbl
[86] Internat. J. Math., 11:6 (2000), 837–847 | DOI | DOI | MR | MR | Zbl | Zbl | DOI | MR | Zbl
[87] Winkelmann J., “On automorphisms of complements of analytic subsets in $\mathbb{C}^n$”, Math. Z., 204 (1990), 117–127 | DOI | MR | Zbl | DOI | MR | Zbl
[88] Winkelmann J., “Tameness and growth conditions”, Doc. Math., 13 (2008), 97–101 | MR | Zbl | MR | Zbl
[89] Winkelmann J., “Tame discrete subsets in Stein manifolds”, J. Aust. Math. Soc., 107:1 (2019), 110–132 | DOI | MR | Zbl | DOI | MR | Zbl