Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_1_a5, author = {I. Panin and C. Walter}, title = {On the algebraic cobordism spectra $\mathbf{MSL}$ and $\mathbf{MSp}$}, journal = {Algebra i analiz}, pages = {144--187}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_1_a5/} }
I. Panin; C. Walter. On the algebraic cobordism spectra $\mathbf{MSL}$ and $\mathbf{MSp}$. Algebra i analiz, Tome 34 (2022) no. 1, pp. 144-187. http://geodesic.mathdoc.fr/item/AA_2022_34_1_a5/
[1] Ananevskii A., “O sootnoshenii algebraicheskikh MSL-kobordizmov i proizvodnykh grupp Vitta”, Dokl. RAN, 448:5 (2013), 503–505
[2] Ananyevskiy A., “On the relation of special linear algebraic cobordism to Witt groups”, Homology Homotopy Appl., 18:1 (2016), 204–230 | DOI | MR | DOI | MR
[3] Balmer P., Calmès B., “Witt groups of Grassmann varieties”, J. Algebr. Geom., 21:4 (2021), 601–642 | DOI | MR | DOI | MR
[4] Dundas B. I., Röndigs O., Østvær P. A., “Motivic functors”, Doc. Math., 8 (2003), 489–525 | MR | Zbl | MR | Zbl
[5] Hovey M., “Spectra and symmetric spectra in general model categories”, J. Pure Appl. Algebra, 165:1 (2001), 63–127 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Isaksen D. C., “Flasque model structures for simplicial presheaves”, K-Theory, 36:3-4 (2005), 371–395 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Jardine J. F., “Motivic symmetric spectra”, Doc. Math., 5 (2000), 445–552 | MR | MR
[8] Levine M., Morel F., Algebraic cobordism, Springer Monogr. Math., Springer, Berlin, 2007 | Zbl | Zbl
[9] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford Univ. Press, New York, 1995 | Zbl | Zbl
[10] Morel F., Voevodsky V., “$A^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 1999, 45–143 | DOI | Zbl | DOI | Zbl
[11] Panin I., “Oriented cohomology theories of algebraic varieties”, K-Theory, 30:3, Special issue in honor of Hyman Bass on his seventieth birthday. Pt. III (2003), 265–314 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Panin I., Pimenov K., Röndigs O., “A universality theorem for Voevodsky's algebraic cobordism spectrum”, Homology Homotopy Appl., 10:2 (2008), 211–226 | DOI | MR | Zbl | DOI | MR | Zbl
[13] Panin I., Pimenov K., Röndigs O., “On Voevodsky's algebraic $K$-theory spectrum”, Algebraic topology, Abel Symp., v. 4, Springer, Berlin, 2009, 279–330 | DOI | MR | Zbl | DOI | MR | Zbl
[14] Panin I., Walter C., “On the motivic commutative ring spectrum $\mathbf{BO}$, On the motivic commutative ring spectrum BO”, Algebra i analiz, 30:6 (2018), 43–96
[15] Panin I. A., Valter Ch., “O svyazi simplekticheskikh algebraicheskikh kobordizmov i ermitovoi K-teorii”, Tr. Mat. in-ta RAN, 307, 2019, 180–192 | Zbl | Zbl
[16] Panin I., Walter C., “Quaternionic Grassmannians and Borel classes in algebraic geometry”, Algebra i analiz, 33:1 (2021), 136–193 | MR | MR
[17] Vezzosi G., “Brown–Peterson spectra in stable $\mathbb{A}^1$-homotopy theory”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 47–64 | MR | Zbl | MR | Zbl
[18] Voevodsky V., “$\mathbf{A}^1$-homotopy theory”, Doc. Math., v. I, 1998, 579–604 | Zbl | Zbl
[19] Voevodsky V., Röndigs O., Østvær P. A., “Voevodsky's Nordfjordeid lectures: motivic homotopy theory”, Motivic homotopy theory, Universitext, Springer, Berlin, 2007, 147–221 | DOI | MR | DOI | MR