Commutators of relative and unrelative elementary unitary groups
Algebra i analiz, Tome 34 (2022) no. 1, pp. 61-104

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, which is an outgrowth of our joint work with Anthony Bak and Roozbeh Hazrat on unitary commutator calculus [9, 27, 30, 31], we find generators of the mixed commutator subgroups of relative elementary groups and obtain unrelativized versions of commutator formulas in the setting of Bak's unitary groups. It is a direct sequel of our papers [71, 76, 78, 79] and [77, 80], where similar results were obtained for $\mathrm{GL}(n,R)$ and for Chevalley groups over a commutative ring with 1, respectively. Namely, let $(A,\Lambda)$ be any form ring and let $n\ge 3$. We consider Bak's hyperbolic unitary group $\mathrm{GU}(2n,A,\Lambda)$. Further, let $(I,\Gamma)$ be a form ideal of $(A,\Lambda)$. One can associate with the ideal $(I,\Gamma)$ the corresponding true elementary subgroup $\mathrm{FU}(2n,I,\Gamma)$ and the relative elementary subgroup $\mathrm{EU}(2n,I,\Gamma)$ of $\mathrm{GU}(2n,A,\Lambda)$. Let $(J,\Delta)$ be another form ideal of $(A,\Lambda)$. In the present paper we prove an unexpected result that the nonobvious type of generators for $\big[\mathrm{EU}(2n,I,\Gamma),\mathrm{EU}(2n,J,\Delta)\big]$, as constructed in our previous papers with Hazrat, are redundant and can be expressed as products of the obvious generators, the elementary conjugates $Z_{ij}(\xi,c)=T_{ji}(c)T_{ij}(\xi)T_{ji}(-c)$, and the elementary commutators $Y_{ij}(a,b)=[T_{ij}(a),T_{ji}(b)]$, where $a\in(I,\Gamma)$, $b\in(J,\Gamma)$, $c\in(A,\Delta)$, and $\xi \in (I,\Gamma)\circ(J,\Delta )$. It follows that $\big[\mathrm{FU}(2n,I,\Gamma),\mathrm{FU}(2n,J,\Delta)\big]= \big[\mathrm{EU}(2n,I,\Gamma),\mathrm{EU}(2n,J,\Delta)\big]$. In fact, we establish much more precise generation results. In particular, even the elementary commutators $Y_{ij}(a,b)$ should be taken for one long root position and one short root position. Moreover, the $Y_{ij}(a,b)$ are central modulo $\mathrm{EU}(2n,(I,\Gamma)\circ(J,\Gamma))$ and behave as symbols. This allows us to generalize and unify many previous results, including the multiple elementary commutator formula, and dramatically simplify their proofs.
Keywords: Bak's unitary groups, elementary subgroups, congruence subgroups, standard commutator formula, unrelativized commutator formula, elementary generators, multiple commutator formula.
@article{AA_2022_34_1_a2,
     author = {N. Vavilov and Z. Zhang},
     title = {Commutators of relative and unrelative elementary unitary groups},
     journal = {Algebra i analiz},
     pages = {61--104},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_1_a2/}
}
TY  - JOUR
AU  - N. Vavilov
AU  - Z. Zhang
TI  - Commutators of relative and unrelative elementary unitary groups
JO  - Algebra i analiz
PY  - 2022
SP  - 61
EP  - 104
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_1_a2/
LA  - en
ID  - AA_2022_34_1_a2
ER  - 
%0 Journal Article
%A N. Vavilov
%A Z. Zhang
%T Commutators of relative and unrelative elementary unitary groups
%J Algebra i analiz
%D 2022
%P 61-104
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_1_a2/
%G en
%F AA_2022_34_1_a2
N. Vavilov; Z. Zhang. Commutators of relative and unrelative elementary unitary groups. Algebra i analiz, Tome 34 (2022) no. 1, pp. 61-104. http://geodesic.mathdoc.fr/item/AA_2022_34_1_a2/

[1] Bak A., The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[2] Bak A., $\mathrm{K}$-theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, NJ, 1981

[3] Bak A., “Non-Abelian $\mathrm{K}$-theory: the nilpotent class of $\mathrm{K}_1$ and general stability”, $\mathrm{K}$-Theory, 4:4 (1991), 363–397 | DOI | Zbl | DOI | Zbl

[4] Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative $\mathrm{K}_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213:6 (2009), 1075–1085 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Bak A., Petrov V., Tang G., “Stability for quadratic $K_1$”, J. K-Theory, 30 (2003), 1–11 | DOI | Zbl | DOI | Zbl

[6] Bak A., Preusser R., “The $E$-normal structure of odd-dimensional unitary groups”, J. Pure Appl. Algebra, 222:9 (2018), 2823–2880 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Bak A., Tang G., “Stability for Hermitian $K_1$”, J. Pure Appl. Algebra, 150:2 (2000), 109–121 | DOI | MR | DOI | MR

[8] Bak A., Vavilov N., “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Bass H., “$\mathrm{K}$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | DOI

[11] Bass H., “Unitary algebraic $K$-theory”, Lecture in Notes Math., 343, Springer, Berlin, 1973, 57–265 | DOI | DOI

[12] Bass H., Milnor J., Serre J.-P., “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge3)$ and $\mathrm{Sp}_{2n}$ $(n\ge2)$”, Inst. Hautes Études Sci. Publ. Math., 33 (1967), 59–133 | DOI | DOI

[13] Basu R., “Local-global principle for general quadratic and general hermitian groups and the nilpotency of $\mathrm{K}H_1$”, Zap. nauch. semin. POMI, 452, 2016, 5–31

[14] Basu R., “A note on general quadratic groups”, J. Algebra Appl., 17:11 (2018), 1850217, 13 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[15] Carter D., Keller G. E., “Bounded elementary generation of $\mathrm{SL}_n({ \mathcal O})$”, Amer. J. Math., 105:3 (1983), 673–687 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Gerasimov V. N., “Gruppa edinits svobodnogo proizvedeniya kolets”, Mat. sb., 134:1 (1989), 42–65

[17] Habdank G., Mixed commutator groups in classical groups and a classification of subgroups of classical groups normalized by relative elementary groups, Doktorarbeit, Univ. Bielefeld, Bielefeld, 1987, 71 pp.

[18] Habdank G., “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary groups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Hahn A. J., O'Meara O. T., The classical groups and $\mathrm{K}$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | DOI | DOI

[20] Hazrat R., “Dimension theory and nonstable $\mathrm{K}_1$ of quadratic modules”, $\mathrm{K}$-Theory, 27:4 (2002), 293–328 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Hazrat R., On $\mathrm{K}$-theory of classical-like groups, Doktorarbeit, Univ. Bielefeld, Bielefeld, 2002, 62 pp.

[22] Hazrat R., Stepanov A., Vavilov N., Zhang Z., “The yoga of commutators”, Zap. nauch. semin. POMI, 387, 2011, 53–82

[23] Hazrat R., Stepanov A., Vavilov N., Zhang Z., “The yoga of commutators, further applications”, Zap. nauch. semin. POMI, 421, 2014, 166–213 | Zbl | Zbl

[24] Hazrat R., Stepanov A., Vavilov N., Zhang Z., “Commutator width in Chevalley groups”, Note Math., 33 (2013), 139–170 | Zbl | Zbl

[25] Hazrat R., Vavilov N., “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179:1-2 (2003), 99–116 | DOI | MR | Zbl | DOI | MR | Zbl

[26] Hazrat R., Vavilov N., “Bak's work on the $K$-theory of rings”, J. $K$-Theory, 4 (2009), 1–65 | MR | Zbl | MR | Zbl

[27] Hazrat R., Vavilov N., Zhang Z., “Relative unitary commutator calculus and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl | DOI | MR | Zbl

[28] Hazrat R., Vavilov N., Zhang Z., “Relative commutator calculus in Chevalley groups”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl | DOI | MR | Zbl

[29] Hazrat R., Vavilov N., Zhang Z., “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinb. Math. Soc. (2), 59:2 (2016), 393–410 | DOI | MR | Zbl | DOI | MR | Zbl

[30] Hazrat R., Vavilov N., Zhang Z., “The commutators of classical groups”, Zap. nauch. semin. POMI, 443, 2016, 151–221

[31] Hazrat R., Vavilov N., Zhang Z., “Multiple commutator formulas for unitary groups”, Israel J. Math., 219 (2017), 287–330 | DOI | MR | Zbl | DOI | MR | Zbl

[32] Hazrat R., Zhang Z., “Generalized commutator formulas”, Comm. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl | DOI | MR | Zbl

[33] Hazrat R., Zhang Z., “Multiple commutator formulas”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl | DOI | MR | Zbl

[34] van der Kallen W., “A group structure on certain orbit sets of unimodular rows”, J. Algebra, 82:2 (1983), 363–397 | DOI | MR | Zbl | DOI | MR | Zbl

[35] Knus M.-A., Quadratic and hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | Zbl | DOI | Zbl

[36] Lavrenov A. V., “Tsentralnaya zamknutost unitarnoi gruppy Steinberga”, Algebra i analiz, 24:5 (2012), 124–140 | MR | MR

[37] Lavrenov A. V., On odd unitary Steinberg group, 25 Mar 2013, 17 pp., arXiv: 1303.6318 [math.KT] | Zbl | Zbl

[38] Lavrenov A., Sinchuk S., “A Horrocks-type theorem for even orthogonal $\mathrm{K}_2$”, Doc. Math., 25 (2020), 767–809 | MR | Zbl | MR | Zbl

[39] Mason A. W., “A note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, J. London Math. Soc. (2), 11:4 (1974), 509–512 | DOI | DOI

[40] Mason A. W., “On subgroup of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. Reine Angew. Math., 322 (1981), 118–135 | MR | Zbl | MR | Zbl

[41] Mason A. W., “A further note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Arch. Math. (Basel), 37:5 (1981), 401–405 | DOI | MR | Zbl | DOI | MR | Zbl

[42] Mason A. W., Stothers W. W., “On subgroup of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl | DOI | MR | Zbl

[43] Mennicke J. L., “Finite factor groups of the unimodular group”, Ann. of Math. (2), 81 (1965), 31–37 | DOI | MR | Zbl | DOI | MR | Zbl

[44] Nica B., “A true relative of Suslin's normality theorem”, Enseign. Math., 61:1–2 (2015), 151–159 | DOI | MR | Zbl | DOI | MR | Zbl

[45] Nica B., “On bounded elementary generation for $\mathrm{SL}_n$ over polynomial rings”, Israel J. Math., 225:1 (2018), 403–410 | DOI | MR | Zbl | DOI | MR | Zbl

[46] Petrov V., “Overgroups of unitary groups”, $K$-Theory, 29:3 (2003), 147–174 | DOI | MR | Zbl | DOI | MR | Zbl

[47] Petrov V. A., “Nechetnye unitarnye gruppy”, Zap. nauch. semin. POMI, 305, 2003, 195–225

[48] Petrov V. A., Nadgruppy klassicheskikh grupp, kand. diss., S.-Peterburg. gos. un-t, SPb, 2005, 129 pp.

[49] Preusser R., The normal structure of hyperbolic unitary groups, Doktorarbeit, Univ. Bielefeld, Bielefeld, 2014, 82 pp. https://pub.uni-bielefeld.de/record/2701405

[50] Preusser R., “Structure of hyperbolic unitary groups II: classification of $E$-normal subgroups”, Algebra Colloq., 24:2 (2017), 195–232 | DOI | MR | Zbl | DOI | MR | Zbl

[51] Preusser R., “Sandwich classification for $\mathrm{GL}_n(R)$, $O_{2n}(R)$ and $U_{2n}(R,\Lambda)$ revisited”, J. Group Theory, 21 (2017), 21–44 | DOI | DOI

[52] Preusser R., “Sandwich classification for $O_{2n+1}(R)$ and $U_{2n+1}(R,\Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571 | DOI | MR | Zbl | DOI | MR | Zbl

[53] Preusser R., “Reverse decomposition of unipotents over noncommutative rings. I. General linear groups”, Linear Algebra Appl., 601 (2020), 285–300 | DOI | MR | Zbl | DOI | MR | Zbl

[54] Preusser R., “The $E$-normal structure of Petrov's odd unitary groups over commutative rings”, Comm. Algebra, 48:3 (2020), 1–18 | DOI | MR | DOI | MR

[55] Preusser R., “On general linear groups over exchange rings”, Linear Multilinear Algebra | DOI | DOI

[56] Saliani M., On the stability of the unitary group, , 12 pp. https://people.math.ethz.ch/k̃nus/papers/Maria_Saliani.pdf

[57] Shchegolev A., Overgroups of elementary block-diagonal subgroups in even unitary groups over quasi-finite rings, Doktorarbeit, Univ. Bielefeld, Bielefeld, 2015 http://pub.uni-bielefeld.de/publication/2769055

[58] Schegolev A. V., “Nadgruppy blochno-diagonalnykh podgrupp giperbolicheskoi unitarnoi gruppy nad kvazi-konechnym koltsom: osnovnye rezultaty”, Zap. nauch. semin. POMI, 443, 2016, 222–233

[59] Shchegolev A. V., “Overgroups of an elementary block-diagonal subgroup of the classical symplectic group over an arbitrary commutative ring”, Algebra i analiz, 30:6 (2019), 147–199 | MR | Zbl | MR | Zbl

[60] Sinchuk S., “Injective stability for unitary $K_1$, revisited”, J. K-Theory, 11:2 (2013), 233–242 | DOI | MR | Zbl | DOI | MR | Zbl

[61] Sivatski A., Stepanov A., “On the word length of commutators in $\mathrm{GL}_n(R)$”, $K$-theory, 17:4 (1999), 295–302 | DOI | MR | Zbl | DOI | MR | Zbl

[62] Stepanov A., “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl | MR | Zbl

[63] Stepanov A. V., “Neabeleva K-teoriya grupp Shevalle nad koltsami”, Zap. nauch. semin. POMI, 423, 2014, 244–263

[64] Stepanov A., “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl | DOI | MR | Zbl

[65] Stepanov A., Vavilov N., “Decomposition of transvections: a theme with variations”, $K$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl | DOI | MR | Zbl

[66] Stepanov A., Vavilov N., “On the length of commutators in Chevalley groups”, Israel J. Math., 185 (2011), 253–276 | DOI | MR | Zbl | DOI | MR | Zbl

[67] Tang G., “Hermitian groups and $K$-theory”, $K$-Theory, 13:3 (1998), 209–267 | DOI | MR | Zbl | DOI | MR | Zbl

[68] Tavgen O. I., “Ogranichennaya porozhdaemost grupp Shevalle nad koltsami S-tselykh algebraicheskikh chisel”, Izv. AN SSSR. Ser. mat., 54:1 (1990), 97–122 | MR | Zbl | MR | Zbl

[69] Vaserstein L. N., You H., “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105 (1995), 93–105 | DOI | MR | Zbl | DOI | MR | Zbl

[70] Vavilov N., “Towards the reverse decomposition of unipotents”, Zap. nauch. semin. POMI, 470, 2018, 21–37

[71] Vavilov N., “Unrelativised standard commutator formula”, Zap. nauch. semin. POMI, 470, 2018, 38–49

[72] Vavilov N., “Commutators of congruence subgroups in the arithmetic case”, Zap. nauch. semin. POMI, 479, 2019, 5–22

[73] Vavilov N., “Towards the reverse decomposition of unipotents. II. The relative case”, Zap. nauch. semin. POMI, 484, 2019, 5–22

[74] Vavilov N. A., Stepanov A. V., “Standartnaya kommutatsionnaya formula”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2008, no. 1, 9–14 | Zbl | Zbl

[75] Vavilov N. A., Stepanov A. V., “Esche raz o standartnoi kommutatsionnoi formule”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2010, no. 1, 16–22 | Zbl | Zbl

[76] Vavilov N., Zhang Z., “Commutators of relative and unrelative elementary groups, revisited”, Zap. nauch. semin. POMI, 485, 2019, 58–71

[77] Vavilov N., Zhang Z., “Generation of relative commutator subgroups in Chevalley groups. II”, Proc. Edinb. Math. Soc. (2), 63:2 (2020), 1–15 | DOI | MR | DOI | MR

[78] Vavilov N., Zhang Z., “Multiple commutators of elementary subgroups: end of the line”, Linear Algebra Appl., 599 (2020), 1–17 | DOI | MR | Zbl | DOI | MR | Zbl

[79] Vavilov N., Zhang Z., Inclusions among commutators of elementary subgroups, 24 Nov. 2019, arXiv: 1911.10526 [math.RA]

[80] Vavilov N., Zhang Z., Commutators of relative and unrelative elementary subgroups in Chevalley groups, 13 Mar. 2020, arXiv: 2003.07230v1 [math.RA]

[81] Voronetsky E. Yu., “Groups normalized by the odd unitary group”, Algebra i analiz, 31:6 (2019), 38–78 | MR | MR

[82] Voronetsky E., “Injective stability for odd unitary $K_1$”, Group Theory, 23:5 (2020), 781–800 | DOI | MR | Zbl | DOI | MR | Zbl

[83] Wilson J. S., “The normal and subnormal structure of general linear groups”, Proc. Cambridge Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl | DOI | MR | Zbl

[84] You H., “On subgroups of Chevalley groups which are generated by commutators”, Dongbei Shida Xuebao, 1992, no. 2, 9–13

[85] You Hong, “Subgroups of classical groups normalized by relative elementary groups”, J. Pure Appl. Algebra, 216:5 (2012), 1040–1051 | DOI | MR | Zbl | DOI | MR | Zbl

[86] You H., Zhou X., “The structure of quadratic groups over commutative rings”, Sci. China Math., 56:11 (2013), 2261–2272 | DOI | MR | Zbl | DOI | MR | Zbl

[87] Yu W., “Stability for odd unitary $K_1$ under the $\Lambda$-stable range condition”, J. Pure Appl. Algebra, 217:5 (2013), 886–891 | DOI | MR | Zbl | DOI | MR | Zbl

[88] Yu W., Tang G., “Nilpotency of odd unitary $K_1$-functor”, Comm. Algebra, 44:8 (2016), 3422–3453 | DOI | MR | Zbl | DOI | MR | Zbl

[89] Yu W., Li Y., Liu H., “A classification of subgroups of odd unitary groups”, Comm. Algebra, 46:9 (2018), 3795–3805 | DOI | MR | Zbl | DOI | MR | Zbl

[90] Zhang Z., Lower K-theory of unitary groups, Doktorarbeit, Queen's Univ. Belfast, Belfast, 2007, 67 pp.

[91] Zhang Z., “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Philos. Soc., 143:3 (2007), 607–619 | DOI | MR | Zbl | DOI | MR | Zbl

[92] Zhang Z., “Subnormal structure of non-stable unitary groups over rings”, J. Pure Appl. Algebra, 214:5 (2010), 622–628 | DOI | MR | Zbl | DOI | MR | Zbl