Two stars theorems for traces of the Zygmund space
Algebra i analiz, Tome 34 (2022) no. 1, pp. 35-60

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Banach space $X$ defined in terms of a big-$O$ condition and its subspace $x$ defined by the corresponding little-$o$ condition, the biduality property (generalizing the concept of reflexivity) asserts that the bidual of $x$ is naturally isometrically isomorphic to $X$. The property is known for pairs of many classical function spaces (such as $(\ell_\infty, c_0)$, $(\mathrm{BMO}, \mathrm{VMO})$, $(\mathrm{Lip}, \mathrm{lip})$, etc.) and plays an important role in the study of their geometric structure. The present paper is devoted to the biduality property for traces to closed subsets $S\subset\mathbb{R}^n$ of a generalized Zygmund space $Z^\omega(\mathbb{R}^n)$. The method of the proof is based on a careful analysis of the structure of geometric preduals of the trace spaces along with a powerful finiteness theorem for the trace spaces $Z^\omega(\mathbb{R}^n)|_S$.
Keywords: Zygmund space, biduality property, trace space, predual space, weak$^*$ topology, finiteness property.
@article{AA_2022_34_1_a1,
     author = {A. Brudnyi},
     title = {Two stars theorems for traces of the {Zygmund} space},
     journal = {Algebra i analiz},
     pages = {35--60},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_1_a1/}
}
TY  - JOUR
AU  - A. Brudnyi
TI  - Two stars theorems for traces of the Zygmund space
JO  - Algebra i analiz
PY  - 2022
SP  - 35
EP  - 60
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_1_a1/
LA  - en
ID  - AA_2022_34_1_a1
ER  - 
%0 Journal Article
%A A. Brudnyi
%T Two stars theorems for traces of the Zygmund space
%J Algebra i analiz
%D 2022
%P 35-60
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_1_a1/
%G en
%F AA_2022_34_1_a1
A. Brudnyi. Two stars theorems for traces of the Zygmund space. Algebra i analiz, Tome 34 (2022) no. 1, pp. 35-60. http://geodesic.mathdoc.fr/item/AA_2022_34_1_a1/

[1] Bierstone E., Milman P. D., Pawłucki W., “Higher-order tangents and Fefferman's paper on Whitney's extension problem”, Ann. of Math. (2), 164:1 (2006), 361–370 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Brudnyi A., Brudnyi Yu., Methods of geometric analysis in extension and trace problems, Monogr. Math., 102, 103, Springer, Basel, 2012

[3] Brudnyi A., Brudnyi Yu., “On the Banach structure of multivariate BV spaces”, Dissertationes Math., 548 (2020), 52 pp. | DOI | Zbl | DOI | Zbl

[4] Brudnyi A., Brudnyi Yu., “Multivariate bounded variation functions of Jordan–Wiener type”, J. Approx. Theory, 251 (2020), 105346, 70 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[5] Brudnyi Yu., “Mnogomernyi analog odnoi teoremy Uitni”, Mat. sb., 82:2 (1970), 175–191 | Zbl | Zbl

[6] Brudnyi A., “On properties of geometric preduals of $C^{k,\omega}$ spaces”, Rev. Mat. Iberoam., 35:6 (2019), 1715–1744 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Conway J. B., A course in functional analysis, Grad. Texts in Math., 96, Springer-Verlag, New York, 2007 | DOI | DOI

[8] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Dzyadyk V. K., Shevchuk I. A., “Prodolzhenie funktsii, yavlyayuschikhsya na proizvolnom mnozhestve pryamoi sledami funktsii s zadannym vtorym modulem nepreryvnosti”, Izv. AN SSSR. Ser. mat., 47:2 (1983), 248–267 | MR | MR

[10] Glaeser G., “Étude de quelques algebres Tayloriennes”, J. d'Analyse Math., 6 (1958), 1–124 | DOI | Zbl | DOI | Zbl

[11] Jonsson A., “The duals of Lipschitz spaces defined on closed sets”, Indiana Univ. Math. J., 39:2 (1990), 467–476 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Hanin L. G., “Kantorovich–Rubinstein norm and its application in the theory of Lipschitz spaces”, Proc. Amer. Math. Soc., 115:2 (1992), 345–352 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Hanin L. G., “Duality for general Lipschitz classes and applications”, Proc. London Math. Soc. (3), 75:1 (1997), 134–156 | DOI | MR | Zbl | DOI | MR | Zbl

[14] de Leeuw K., “Banach spaces of Lipschitz functions”, Studia Math., 21 (1961/62), 55–66 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Marchaud A., “Sur les dérivés et sur les différences des fonctions de variables réelles”, J. Math. Pures Appl., 6 (1927), 337–425 | Zbl | Zbl

[16] Perfekt K.-M., “Duality and distance formulas in spaces defined by means of oscillation”, Ark. Mat., 51:2 (2013), 345–361 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Perfekt K.-M., “On $M$-ideals and $o$-$O$ type spaces”, Math. Scand., 121:1 (2017), 151–160 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Shvartsman P. A., “O sledakh funktsii klassa Zigmunda”, Sib. Mat. zh., 28:5 (1987), 203–215 | MR | Zbl | MR | Zbl

[19] Whitney H., “Analytic extension of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | DOI | MR

[20] Zygmund A., “Smooth functions”, Duke Math. J., 12 (1945), 47–76 | MR | Zbl | MR | Zbl