Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2022_34_1_a1, author = {A. Brudnyi}, title = {Two stars theorems for traces of the {Zygmund} space}, journal = {Algebra i analiz}, pages = {35--60}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2022_34_1_a1/} }
A. Brudnyi. Two stars theorems for traces of the Zygmund space. Algebra i analiz, Tome 34 (2022) no. 1, pp. 35-60. http://geodesic.mathdoc.fr/item/AA_2022_34_1_a1/
[1] Bierstone E., Milman P. D., Pawłucki W., “Higher-order tangents and Fefferman's paper on Whitney's extension problem”, Ann. of Math. (2), 164:1 (2006), 361–370 | DOI | MR | Zbl | DOI | MR | Zbl
[2] Brudnyi A., Brudnyi Yu., Methods of geometric analysis in extension and trace problems, Monogr. Math., 102, 103, Springer, Basel, 2012
[3] Brudnyi A., Brudnyi Yu., “On the Banach structure of multivariate BV spaces”, Dissertationes Math., 548 (2020), 52 pp. | DOI | Zbl | DOI | Zbl
[4] Brudnyi A., Brudnyi Yu., “Multivariate bounded variation functions of Jordan–Wiener type”, J. Approx. Theory, 251 (2020), 105346, 70 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[5] Brudnyi Yu., “Mnogomernyi analog odnoi teoremy Uitni”, Mat. sb., 82:2 (1970), 175–191 | Zbl | Zbl
[6] Brudnyi A., “On properties of geometric preduals of $C^{k,\omega}$ spaces”, Rev. Mat. Iberoam., 35:6 (2019), 1715–1744 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Conway J. B., A course in functional analysis, Grad. Texts in Math., 96, Springer-Verlag, New York, 2007 | DOI | DOI
[8] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl | DOI | MR | Zbl
[9] Dzyadyk V. K., Shevchuk I. A., “Prodolzhenie funktsii, yavlyayuschikhsya na proizvolnom mnozhestve pryamoi sledami funktsii s zadannym vtorym modulem nepreryvnosti”, Izv. AN SSSR. Ser. mat., 47:2 (1983), 248–267 | MR | MR
[10] Glaeser G., “Étude de quelques algebres Tayloriennes”, J. d'Analyse Math., 6 (1958), 1–124 | DOI | Zbl | DOI | Zbl
[11] Jonsson A., “The duals of Lipschitz spaces defined on closed sets”, Indiana Univ. Math. J., 39:2 (1990), 467–476 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Hanin L. G., “Kantorovich–Rubinstein norm and its application in the theory of Lipschitz spaces”, Proc. Amer. Math. Soc., 115:2 (1992), 345–352 | DOI | MR | Zbl | DOI | MR | Zbl
[13] Hanin L. G., “Duality for general Lipschitz classes and applications”, Proc. London Math. Soc. (3), 75:1 (1997), 134–156 | DOI | MR | Zbl | DOI | MR | Zbl
[14] de Leeuw K., “Banach spaces of Lipschitz functions”, Studia Math., 21 (1961/62), 55–66 | DOI | MR | Zbl | DOI | MR | Zbl
[15] Marchaud A., “Sur les dérivés et sur les différences des fonctions de variables réelles”, J. Math. Pures Appl., 6 (1927), 337–425 | Zbl | Zbl
[16] Perfekt K.-M., “Duality and distance formulas in spaces defined by means of oscillation”, Ark. Mat., 51:2 (2013), 345–361 | DOI | MR | Zbl | DOI | MR | Zbl
[17] Perfekt K.-M., “On $M$-ideals and $o$-$O$ type spaces”, Math. Scand., 121:1 (2017), 151–160 | DOI | MR | Zbl | DOI | MR | Zbl
[18] Shvartsman P. A., “O sledakh funktsii klassa Zigmunda”, Sib. Mat. zh., 28:5 (1987), 203–215 | MR | Zbl | MR | Zbl
[19] Whitney H., “Analytic extension of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | DOI | MR
[20] Zygmund A., “Smooth functions”, Duke Math. J., 12 (1945), 47–76 | MR | Zbl | MR | Zbl