Jackson type inequalities for differentiable functions in weighted Orlicz spaces
Algebra i analiz, Tome 34 (2022) no. 1, pp. 1-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work some Jackson Stechkin type direct theorems of trigonometric approximation are proved in Orlicz spaces with weights satisfying some Muckenhoupt $A_{p}$ condition. To obtain a refined version of the Jackson type inequality, an extrapolation theorem, Marcinkiewicz multiplier theorem, and Littlewood–Paley type results are proved. As a consequence, refined inverse Marchaud type inequalities are obtained. By means of a realization result, an equivalence is found between the fractional order weighted modulus of smoothness and Peetre's classical weighted $K$-functional.
Keywords: Jackson inequality, moduli of smoothness, Muckenhoupt weight, trigonometric approximation.
@article{AA_2022_34_1_a0,
     author = {R. Akg\"un},
     title = {Jackson type inequalities for differentiable functions in weighted {Orlicz} spaces},
     journal = {Algebra i analiz},
     pages = {1--34},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2022_34_1_a0/}
}
TY  - JOUR
AU  - R. Akgün
TI  - Jackson type inequalities for differentiable functions in weighted Orlicz spaces
JO  - Algebra i analiz
PY  - 2022
SP  - 1
EP  - 34
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2022_34_1_a0/
LA  - en
ID  - AA_2022_34_1_a0
ER  - 
%0 Journal Article
%A R. Akgün
%T Jackson type inequalities for differentiable functions in weighted Orlicz spaces
%J Algebra i analiz
%D 2022
%P 1-34
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2022_34_1_a0/
%G en
%F AA_2022_34_1_a0
R. Akgün. Jackson type inequalities for differentiable functions in weighted Orlicz spaces. Algebra i analiz, Tome 34 (2022) no. 1, pp. 1-34. http://geodesic.mathdoc.fr/item/AA_2022_34_1_a0/

[1] Akgün R., “Sharp Jackson and converse theorems of trigonometric approximation in weighted Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 152 (2010), 1–18 | MR | Zbl | MR | Zbl

[2] Akgün R., “Polynomial approximation in weighted Lebesgue spaces”, East J. Approx., 17:3 (2011), 253–266 | MR | Zbl | MR | Zbl

[3] Akgün R., “Approximating polynomials for functions of weighted Smirnov–Orlicz spaces”, J. Funct. Spaces Appl., 2012, 982360, 41 pp. | MR | Zbl | MR | Zbl

[4] Akgün R., “Some inequalities of trigonometric approximation in weighted Orlicz spaces”, Math. Slovaca, 66:1 (2016), 217–234 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Akgün R., Weighted norm inequalities in Lebesgue spaces with Muckenhoupt weights and some applications to operators, 2017, arXiv: 1210.4714v3 [math.CA]

[6] Akgün R., “Realization and characterization of modulus of smoothness in weighted Lebesgue spaces”, Algebra i analiz, 26:5 (2015), 64–87 | MR | Zbl | MR | Zbl

[7] Akgün R., Israfilov D. M., “Simultaneous and converse approximation theorems in weighted Orlicz spaces”, Bull. Belg. Math. Soc. Simon Stevin, 17:1 (2010), 13–28 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Akgün R., Israfilov D. M., “Approximation in weighted Orlicz spaces”, Math. Slovaca, 61:4 (2011), 601–618 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Berkson E., Gillespie T. A., “On restrictions of multipliers in weighted settings”, Indiana Univ. Math. J., 52:4 (2003), 927–961 | DOI | MR | Zbl | DOI | MR | Zbl

[10] García-Cuerva J., Rubio de Francia J. L., Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland Publ. Co., Amsterdam, 1985 | Zbl | Zbl

[11] Curbera G. P., García-Cuerva J., Martell J. M., Pérez C., “Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals”, Adv. Math., 203:1 (2006), 256–318 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Cruz-Uribe D., Martell J. M., Pérez C., “Extrapolation results for $A_{\infty }$ weights and applications”, J. Funct. Anal., 213:2 (2004), 412–439 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Ditzian Z., Ivanov K. G., “Strong converse inequalities”, J. Anal. Math., 61 (1993), 61–111 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Dai F., “Jackson-type inequality for doubling weights on the sphere”, Constr. Approx., 24:1 (2006), 91–112 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Gadzhieva E. A., Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolskii–Besov spaces, Avtoref. kand. dis., Tbilisi, 1986

[16] Genebashvili I., Gogatishvili A., Kokilashvili V., Krbec M., Weight theory for integral transforms on spaces of homogeneous type, Pitman Monogr. Surveys Pure Appl. Math., 92, Longman, Harlow, 1998 | MR | Zbl | MR | Zbl

[17] Gogatishvili A., Kokilashvili V., “Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces”, Georgian Math. J., 1:6 (1994), 641–673 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Gogatishvili A., Kokilashvili V., “Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals II”, Georgian Math. J., 2:5 (1995), 445–468 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl | DOI | MR | Zbl

[20] Khabazi M., “The mean convergence of trigonometric Fourier series in weighted Orlicz classes”, Proc. A. Razmadze Math. Inst., 129 (2002), 65–75 | MR | Zbl | MR | Zbl

[21] Kokilashvili V., “A note on extrapolation and modular inequalities”, Proc. A. Razmadze Math. Inst., 150 (2009), 91–97 | MR | Zbl | MR | Zbl

[22] Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Sci. Publ. Co., Inc., River Edge, NJ, 1991 | Zbl | Zbl

[23] Israfilov D. M., Guven A., “Approximation by trigonometric polynomials in weighted Orlicz spaces”, Studia Math., 174:2 (2006), 147–168 | DOI | MR | Zbl | DOI | MR | Zbl

[24] Jafarov S. Z., “Ul$'$yanov type inequalities for moduli of smoothness”, Appl. Math. E-Notes, 12 (2012), 221–227 | MR | Zbl | MR | Zbl

[25] Kurtz D. S., “Littlewood–Paley and multiplier theorems on weighted $L_{p}$ spaces”, Trans. Amer. Math. Soc., 259:1 (1980), 235–254 | MR | Zbl | MR | Zbl

[26] Ky N. X., “On approximation by trigonometric polynomials in $L_{u}^{p}$-spaces”, Studia Sci. Math. Hungar., 28:1-2 (1993), 183–188 | MR | Zbl | MR | Zbl

[27] Ky N. X., “Moduli of mean smoothness and approximation with $A_{p}$-weights”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 40 (1997), 37–48

[28] Ky N. X., “An Alexits's lemma and its applications in approximation theory”, Functions, series, operators (Budapest, 1999), János Bolyai Math. Soc., Budapest, 2002, 287–296

[29] Littlewood J. E., Paley R. E. A. C., “Theorems on Fourier series and power series. Pt. I; II; III”, J. London Math. Soc., 6:3 (1931), 230–233 ; Proc. London Math. Soc. (2), 42:1 (1936), 52–89 ; Proc. London Math. Soc. (2), 43:2 (1937), 105–126 | DOI | MR | DOI | MR | MR | Zbl | DOI | MR | Zbl

[30] Natanson G. I., Timan M. F., “Srednie geometricheskie posledovatelnosti nailuchshikh priblizhenii”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1979, no. 4, 50–52 | Zbl | Zbl

[31] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[32] Timan M. F., “O teoreme Dzheksona v $L_{p}$ prostranstvakh”, Ukr. mat. zh., 18:1 (1966), 134–137 | MR | Zbl | MR | Zbl

[33] Zygmund A., Trigonometric series, v. II, Cambridge Univ. Press, New York, 1959 | Zbl | Zbl