Supercharacters for parabolic contractions of finite groups of $ A,B,C,D$ Lie types
Algebra i analiz, Tome 33 (2021) no. 6, pp. 121-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_6_a6,
     author = {A. N. Panov},
     title = {Supercharacters for parabolic contractions of finite groups of $ A,B,C,D$ {Lie} types},
     journal = {Algebra i analiz},
     pages = {121--140},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_6_a6/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Supercharacters for parabolic contractions of finite groups of $ A,B,C,D$ Lie types
JO  - Algebra i analiz
PY  - 2021
SP  - 121
EP  - 140
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_6_a6/
LA  - ru
ID  - AA_2021_33_6_a6
ER  - 
%0 Journal Article
%A A. N. Panov
%T Supercharacters for parabolic contractions of finite groups of $ A,B,C,D$ Lie types
%J Algebra i analiz
%D 2021
%P 121-140
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_6_a6/
%G ru
%F AA_2021_33_6_a6
A. N. Panov. Supercharacters for parabolic contractions of finite groups of $ A,B,C,D$ Lie types. Algebra i analiz, Tome 33 (2021) no. 6, pp. 121-140. http://geodesic.mathdoc.fr/item/AA_2021_33_6_a6/

[1] Diaconis P., Isaacs I. M., “Supercharacters and superclasses for algebra groups”, Trans. Amer. Math. Soc., 360 (2008), 2359–2392

[2] André C. A. M., “Basic characters of the unitriangular group”, J. Algebra, 175 (1995), 287–319

[3] André C. A. M., “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176:3 (1995), 959–1000

[4] André C. A. M., “The basic character table of the unitriangular group”, J. Algebra, 241:1 (2001), 437–471

[5] André C. A. M., Neto A. M., “Supercharacters of the finite the Sylow subgroup of the finite symplectic and orthogonal groups”, Pacific Math. J., 239:2 (2009), 201–230

[6] André C. A. M., Neto A. M., “A supercharacter theory for the Sylow p-subgroups of the finite symplectic and orthogonal groups”, J. Algebra, 322:4 (2009), 1273–1294

[7] André C. A. M., Freitas J. P., Neto A. M., “A supercharacter theory for involutive algebra groups”, J. Algebra, 430 (2015), 159–190

[8] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524

[9] Vinberg E. B., Onischik A. L., Gorbatsevich V. V., Stroenie grupp i algebr Li, Itogi nauki i tekhn. Covr. probl. mat. Fundam. napravl., 41, VINITI AN SSSR, M., 1990

[10] Panov A. N., “Supercharacter theories for algebra group extensions”, J. Group Theory, 24:2 (2021), 263–283

[11] Panov A. N., “Teoriya superkharakterov dlya borelevskoi kontraktsii gruppy $\mathrm{GL}(n,\mathbb{F}_q)$”, Vestn. Sankt.-Peterburg. un-ta Cer. 1, Mat., mekh., astronom., 7:2 (2020), 254–268

[12] Panov A. N., “Teoriya superkharakterov dlya grupp obratimykh elementov privedennykh algebr”, Algebra i analiz, 27:6 (2015), 242–259

[13] Panov A. N., “Supercharacters for finite groups of triangular type”, Comm. Algebra, 46:3 (2018), 1032–1046

[14] Panov A. N., “Towards a supercharacter theory of parabolic subgroups in $\mathrm{GL}(n,\mathbb{F}_q)$”, Algebr. Represent. Theory, 21:5 (2018), 1133–1149

[15] Panov A. N., “Two supercharacter theories for the parabolic subgroups in orthogonal and symplectic groups”, J. Algebra, 539 (2019), 37–53

[16] Thiem N., “Supercharacter theories of type $A$ unipotent radicals and unipotent polytopes”, Algebr. Comb., 1:1 (2018), 23–45

[17] Andrews S., “Supercharacters of unipotent groups defined by involutions”, J. Algebra, 425 (2015), 1–30