Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_6_a3, author = {N. Kuznetsov}, title = {Inverse mean value property of solutions to the modified {Helmholtz} equation}, journal = {Algebra i analiz}, pages = {71--77}, publisher = {mathdoc}, volume = {33}, number = {6}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_6_a3/} }
N. Kuznetsov. Inverse mean value property of solutions to the modified Helmholtz equation. Algebra i analiz, Tome 33 (2021) no. 6, pp. 71-77. http://geodesic.mathdoc.fr/item/AA_2021_33_6_a3/
[1] Adams, D. R., Hedberg, L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996
[2] Armitage D. H., Goldstein M., “Quadrature and harmonic $L^1$-approximation in annuli”, Trans. Amer. Math. Soc., 312 (1989), 141–154
[3] Armitage D. H., Goldstein M., “The volume mean-value property of harmonic functions”, Complex Variables Theory Appl., 13:3-4 (1990), 185–193
[4] Armitage D. H., Goldstein M., “Characterizations of balls and strips via harmonic functions”, Approximation by solutions of partial differential equations (Hanstholm, 1991), Kluwer Acad. Publ., 1992, 1–9
[5] Burckel R. B., “Three secrets about harmonic functions”, Amer. Math. Monthly, 104 (1997), 52–56
[6] Epstein B., “On the mean-value property of harmonic functions”, Proc. Amer. Math. Soc., 13 (1962), 830
[7] Goldstein M., Haussmann W., Rogge L., “On the mean value property of harmonic functions and best harmonic $L^1$-approximation”, Trans. Amer. Math. Soc., 305:2 (1988), 505–515
[8] Hansen W., Netuka I., “Inverse mean value property of harmonic functions”, Math. Ann., 297:1 (1993), 147–156
[9] Hansen W., Netuka I., “Inverse mean value property of harmonic functions, Corrigendum”, Math. Ann., 303:2 (1995), 373–375
[10] Hedberg L. I., “Approximation in the mean by solutions of elliptic equations”, Duke Math. J., 40 (1973), 9–16
[11] Kosmodemyanskii A. A. (ml.), “Obraschenie teoremy o srednem znachenii dlya garmonicheskikh funktsii”, Uspekhi mat. nauk, 36:5 (1981), 175–176
[12] Kuran Ü., “On the mean value property of harmonic functions”, Bull. London Math. Soc., 4 (1972), 311–312
[13] Kuznetsov N., “Metaharmonic functions: mean flux theorem, its converse and related properties”, Algebra i analiz, 33:2 (2021), 82–97
[14] Kuznetsov N., “Mean value properties of solutions to the Helmholtz and modified Helmholtz equations”, J. Math. Sci., 257 (2021), 673–683
[15] Netuka I., Veselý J., “Mean value property and harmonic functions”, Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 430, Kluwer, Dordrecht, 1994, 359–398
[16] Neumann C., Allgemeine Untersuchungen über das Newtonsche Prinzip der Fernwirkungen, Teubner, Leipzig, 1896
[17] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984
[18] Payne L. E., Schaefer P. W., “Duality theorems in some overdetermined boundary value problems”, Math. Methods Appl. Sci., 11:6 (1989), 805–819
[19] Poritsky H., “Generalizations of the Gauss law of the spherical mean”, Trans. Amer. Math. Soc., 43:2 (1938), 199–225
[20] Sakai M., Quadrature domains, Lecture Notes in Math., 934, Springer-Verlag, Berlin, 1982
[21] Watson G. N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944