Geometry of planar curves intersecting many lines in a few points
Algebra i analiz, Tome 33 (2021) no. 6, pp. 214-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local Lipschitz property is shown for the graph avoiding multiple point intersection with lines directed in a given cone. The assumption is much stronger than those of Marstrand's well-known theorem, but the conclusion is much stronger too. Additionally, a continuous curve with a similar property is $\sigma$-finite with respect to Hausdorff length and an estimate on the Hausdorff measure of each “piece” is found.
Keywords: Hausdorff dimension, Lipschitz function, Marstrand's theorem.
@article{AA_2021_33_6_a10,
     author = {D. Vardakis and A. Volberg},
     title = {Geometry of planar curves intersecting many lines in a few points},
     journal = {Algebra i analiz},
     pages = {214--234},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_6_a10/}
}
TY  - JOUR
AU  - D. Vardakis
AU  - A. Volberg
TI  - Geometry of planar curves intersecting many lines in a few points
JO  - Algebra i analiz
PY  - 2021
SP  - 214
EP  - 234
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_6_a10/
LA  - en
ID  - AA_2021_33_6_a10
ER  - 
%0 Journal Article
%A D. Vardakis
%A A. Volberg
%T Geometry of planar curves intersecting many lines in a few points
%J Algebra i analiz
%D 2021
%P 214-234
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_6_a10/
%G en
%F AA_2021_33_6_a10
D. Vardakis; A. Volberg. Geometry of planar curves intersecting many lines in a few points. Algebra i analiz, Tome 33 (2021) no. 6, pp. 214-234. http://geodesic.mathdoc.fr/item/AA_2021_33_6_a10/

[1] Eiderman V., Larsen M., “A “rare” plane set with Hausdorff dimension $2$”, Proc. Amer. Math. Soc., 149:3 (2021), 1091–1098

[2] Federer H., Geometric measure theory, Grundlehren Math. Wiss., 153, Springer Verlag, 1969

[3] Marstrand J. M., “Some fundamental geometrical properties of plane sets of fractional dimension”, Proc. London Math. Soc. (3), 4:3 (1954), 257–302

[4] Liaw C., Treil S., “Matrix measures and finite rank perturbations of self-adjoint operators”, J. Spectr. Theory, 10:4 (2020), 1173–1210

[5] Liaw C., Treil S., Volberg A., Dimension of the exceptional set in the Aronszajn–Donoghue theory for finite rank perturbations, Preprint, 2019, 7 pp.

[6] Mattila P., “Hausdorff dimension, orthogonal projections and intersections with planes”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 1:2 (1975), 227–244

[7] Mattila P., Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995