Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_6_a10, author = {D. Vardakis and A. Volberg}, title = {Geometry of planar curves intersecting many lines in a few points}, journal = {Algebra i analiz}, pages = {214--234}, publisher = {mathdoc}, volume = {33}, number = {6}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_6_a10/} }
D. Vardakis; A. Volberg. Geometry of planar curves intersecting many lines in a few points. Algebra i analiz, Tome 33 (2021) no. 6, pp. 214-234. http://geodesic.mathdoc.fr/item/AA_2021_33_6_a10/
[1] Eiderman V., Larsen M., “A “rare” plane set with Hausdorff dimension $2$”, Proc. Amer. Math. Soc., 149:3 (2021), 1091–1098
[2] Federer H., Geometric measure theory, Grundlehren Math. Wiss., 153, Springer Verlag, 1969
[3] Marstrand J. M., “Some fundamental geometrical properties of plane sets of fractional dimension”, Proc. London Math. Soc. (3), 4:3 (1954), 257–302
[4] Liaw C., Treil S., “Matrix measures and finite rank perturbations of self-adjoint operators”, J. Spectr. Theory, 10:4 (2020), 1173–1210
[5] Liaw C., Treil S., Volberg A., Dimension of the exceptional set in the Aronszajn–Donoghue theory for finite rank perturbations, Preprint, 2019, 7 pp.
[6] Mattila P., “Hausdorff dimension, orthogonal projections and intersections with planes”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 1:2 (1975), 227–244
[7] Mattila P., Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995