A new characterization of GCD domains of formal power series
Algebra i analiz, Tome 33 (2021) no. 5, pp. 193-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

By using the $v$-operation, a new characterization for a power series ring to be a GCD domain is discussed. It is shown that if $D$ is a $\mathrm{UFD}$, then $D[\![X]\!]$ is a GCD domain if and only if for any two integral $v$-invertible $v$‑ideals $I$ and $J$ of $D[\![X]\!]$ such that $(IJ)_{0}\neq (0),$ we have $((IJ)_{0})_{v}$ $= ((IJ)_{v})_{0},$ where $I_0=\{f(0) \mid f\in I\}$. This shows that if $D$ is a GCD domain such that $D[\![X]\!]$ is a $\pi$-domain, then $D[\![X]\!]$ is a GCD domain.
Keywords: GCD domain, power series rings.
@article{AA_2021_33_5_a6,
     author = {A. Hamed},
     title = {A new characterization of {GCD} domains of formal power series},
     journal = {Algebra i analiz},
     pages = {193--206},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_5_a6/}
}
TY  - JOUR
AU  - A. Hamed
TI  - A new characterization of GCD domains of formal power series
JO  - Algebra i analiz
PY  - 2021
SP  - 193
EP  - 206
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_5_a6/
LA  - en
ID  - AA_2021_33_5_a6
ER  - 
%0 Journal Article
%A A. Hamed
%T A new characterization of GCD domains of formal power series
%J Algebra i analiz
%D 2021
%P 193-206
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_5_a6/
%G en
%F AA_2021_33_5_a6
A. Hamed. A new characterization of GCD domains of formal power series. Algebra i analiz, Tome 33 (2021) no. 5, pp. 193-206. http://geodesic.mathdoc.fr/item/AA_2021_33_5_a6/

[1] Anderson D. D., “$\pi$-domains\textup, divisorial ideals and overrings”, Glasgow Math. J., 19:2 (1978), 199–203 | DOI | MR | Zbl

[2] Anderson D. D., Anderson D. F., “Generalized GCD-domains”, Comment. Math. Univ. St. Pauli, 28:2 (1980), 215–221 | MR | Zbl

[3] Anderson D. D., Anderson D. F., Zafrullah M., “Splitting the $t$-class group”, J. Pure Appl. Algebra, 74 (1991), 17–37 | DOI | MR | Zbl

[4] Anderson D. D., Hamed A., Zafrullah M., “On $S$-GCD domains”, J. Algebra Appl., 18:4 (2019), 1950067, 14 pp. | DOI | MR | Zbl

[5] Anderson D. D., Kang B. G., Park M. H., “Anti-archimedean rings and power series rings”, Comm. Algebra, 26:10 (1998), 3223–3238 | DOI | MR | Zbl

[6] Anderson D. F., El Abidine D. N., “The $A+XB[X]$ and $A+X[[B]]$ constructions from GCD-domains”, J. Pure Appl. Algebra, 159 (2001), 15–24 | DOI | MR | Zbl

[7] Gilmer R., Multiplicative ideal theory, Queen's Papers Pure Appl. Math., 90, Queen's Univ., Kingston, ON, 1992 | MR | Zbl

[8] Hamed A., “The local $S$-class group of an integral domain”, Rocky Mountain J. Math., 8:5 (2018), 1585–1605 | MR

[9] Hamed A., Kim H., “Unique factorization and $S$-Picard groups of domains of power series”, Comm. Algebra, 47:8 (2019), 3359–3370 | DOI | MR | Zbl

[10] Hamed A., Hizem S., “On the class group and $S$-class group of formal power series rings”, J. Pure Appl. Algebra, 221:11 (2017), 2869–2879 | DOI | MR | Zbl

[11] Huckaba J. A., Commutative rings with zero divisors, Monogr. Textbooks Pure Appl. Math., 117, Marcel Dekker, Inc., New York, 1988 | MR | Zbl

[12] Park M. H., Anderson D. D., Kang B. G., “GCD-domains and power series rings”, Comm. Algebra, 30:12 (2002), 5955–5960 | DOI | MR | Zbl

[13] Samuel P., “On unique factorization domains”, Illinois J. Math., 5 (1961), 1–17 | DOI | MR | Zbl