Limit behavior of Weyl coefficients
Algebra i analiz, Tome 33 (2021) no. 5, pp. 153-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sets of radial or nontangential limit points towards $i\infty$ of a Nevanlinna function $q$ are studied. Given a nonempty, closed, and connected subset $\mathcal{L}$ of $\overline{\mathbb C_+}$, a Hamiltonian $H$ is constructed explicitly such that the radial and outer angular cluster sets towards $i\infty$ of the Weyl coefficient $q_H$ are both equal to $\mathcal{L}$. The method is based on a study of the continuous group action of rescaling operators on the set of all Hamiltonians.
Keywords: Weyl coefficient, canonical system, cluster set, Nevanlinna function.
@article{AA_2021_33_5_a4,
     author = {R. Pruckner and H. Woracek},
     title = {Limit behavior of {Weyl} coefficients},
     journal = {Algebra i analiz},
     pages = {153--175},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_5_a4/}
}
TY  - JOUR
AU  - R. Pruckner
AU  - H. Woracek
TI  - Limit behavior of Weyl coefficients
JO  - Algebra i analiz
PY  - 2021
SP  - 153
EP  - 175
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_5_a4/
LA  - en
ID  - AA_2021_33_5_a4
ER  - 
%0 Journal Article
%A R. Pruckner
%A H. Woracek
%T Limit behavior of Weyl coefficients
%J Algebra i analiz
%D 2021
%P 153-175
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_5_a4/
%G en
%F AA_2021_33_5_a4
R. Pruckner; H. Woracek. Limit behavior of Weyl coefficients. Algebra i analiz, Tome 33 (2021) no. 5, pp. 153-175. http://geodesic.mathdoc.fr/item/AA_2021_33_5_a4/

[1] Atkinson F. V., Discrete and continuous boundary problems, Math. Sci. Eng., 8, Acad. Press, New York, 1964 | MR | Zbl

[2] Behrndt J., Hassi S., de Snoo H., Boundary value problems. Weyl functions, and differential operators, Monogr. Math., 108, Birkhäuser/Springer, Cham, 2020 | DOI | MR | Zbl

[3] Belna C. L., Colwell P., Piranian G., “The radial behavior of Blaschke products”, Proc. Amer. Math. Soc., 93:2 (1985), 267–271 | DOI | MR | Zbl

[4] Bogachev V. I., Osnovy teorii mery, v. 1, 2-e izd., NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2006

[5] de Branges L., “Some Hilbert spaces of entire functions. II”, Trans. Amer. Math. Soc., 99 (1961), 118–152 | DOI | MR | Zbl

[6] de Branges L., Hilbert spaces of entire functions, Prentice-Hall Inc., Englewood Cliffs, N.J., 1968 | MR | Zbl

[7] Collingwood E. F., Lohwater A. J., The theory of cluster sets, Cambridge Tracts Math. Math. Phys., 56, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl

[8] Decker E., “On the boundary behavior of singular inner functions”, Michigan Math. J., 41:3 (1994), 547–562 | DOI | MR | Zbl

[9] Donaire J. J., “Radial behaviour of inner functions in $B_0$”, J. London Math. Soc. (2), 63:1 (2001), 141–158 | DOI | MR | Zbl

[10] Eckhardt J., Kostenko A., Teschl G., “Spectral asymptotics for canonical systems”, J. Reine Angew. Math., 736 (2018), 285–315 | DOI | MR | Zbl

[11] Fabian M. et al., Functional analysis and infinite-dimensional geometry, CMS Books Math., 8, Springer-Verlag, New York, 2001 | MR | Zbl

[12] Gauthier P. M., “A characterization of non-tangential cluster sets for holomorphic functions $f\colon\mathbb{D}\to\mathbb{D}''$”, Recent Advances in Complex and Harmonic Analysis, Réunion dété SMC, 2021

[13] Gesztesy F., Tsekanovskii E., “On matrix-valued Herglotz functions”, Math. Nachr., 218 (2000), 61–138 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] Girela D., Suárez D., “On Blaschke products, Bloch functions and normal functions”, Rev. Mat. Complut., 24:1 (2011), 49–57 | DOI | MR | Zbl

[15] Gorkin P., Mortini R., “Cluster sets of interpolating Blaschke products”, J. Anal. Math., 96 (2005), 369–395 | DOI | MR | Zbl

[16] Hassi S., de Snoo H., Winkler H., “Boundary-value problems for two-dimensional canonical systems”, Integral Equations Operator Theory, 36:4 (2000), 445–479 | DOI | MR | Zbl

[17] Kats I. S., Krein M. G., “R-funktsii — analiticheskie funktsii, otobrazhayuschie verkhnyuyu poluploskost v sebya”: Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 629–647

[18] Kasahara Y., “Spectral theory of generalized second order differential operators and its applications to Markov processes”, Japan. J. Math. (N.S.), 1:1 (1975), 67–84 | DOI | MR | Zbl

[19] Kasahara Y., Watanabe S., “Asymptotic behavior of spectral measures of Krein's and Kotani's strings”, Kyoto J. Math., 50:3 (2010), 623–644 | DOI | MR | Zbl

[20] Langer M., Pruckner R., Woracek H., Canonical systems whose Weyl coefficients have regularly varying asymptotics, manuscript in preparation

[21] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[22] Levitan B. M., “Ob asimptoticheskom povedenii spektralnoi funktsii samosopryazhennogo differentsialnogo uravneniya vtorogo poryadka”, Izv. AN SSSR. Sep. mat., 16:4 (1952), 325–352 | Zbl

[23] Noshiro K., Cluster sets, Ergeb. Math. Grenzgeb., 28, Springer-Verlag, Berlin, 1960 | MR | Zbl

[24] Pruckner R., Woracek H., Limit behaviour of Nevanlinna functions, ASC Report 16, Vienna Univ. Technology, 2019, 29 pp. http://www.asc.tuwien.ac.at/preprint/asc16x2019.pdf

[25] Remling C., Spectral theory of canonical systems, De Gruyter Stud. Math., 70, De Gruyter, Berlin, 2018 | MR | Zbl

[26] Romanov R., Canonical systems and de Branges spaces, version 1, Aug. 26 2014, arXiv: 1408.6022v1 [math.SP]

[27] Titchmarsh E. C., Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946 | MR | Zbl

[28] Weyl H., “Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen”, Math. Ann., 68:2 (1910), 220–269 | DOI | MR | Zbl