Problems on the loss of heat: herd instinct versus individual feelings
Algebra i analiz, Tome 33 (2021) no. 5, pp. 1-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several problems are discussed concerning steady-state distribution of heat in domains in $\mathbb{R}^3$ that are complementary to a finite number of balls. The study of these problems was initiated by M. L. Glasser in 1977. Then, in 1978, M. L. Glasser and S. G. Davison presented numerical evidence that the heat flux from two equal balls in $\mathbb{R}^3$ decreases when the balls move closer to each other. These authors interpreted this result in terms of the behaviorial habits of sleeping armadillos, the closer animals to each other, the less heat they lose. Much later, in 2003, A. Eremenko proved this monotonicity property rigorously and suggested new questions on the heat fluxes. The goal of this paper is to survey recent developments in this area, provide answers to some open questions, and draw attention to several challenging open problems concerning heat fluxes from configurations consisting of $n\ge 2$ balls in $\mathbb{R}^3$.
Keywords: bundling problem, Newtonian capacity, heat flux, configuration of balls, polarization.
@article{AA_2021_33_5_a0,
     author = {A. Yu. Solynin},
     title = {Problems on the loss of heat: herd instinct versus individual feelings},
     journal = {Algebra i analiz},
     pages = {1--50},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_5_a0/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Problems on the loss of heat: herd instinct versus individual feelings
JO  - Algebra i analiz
PY  - 2021
SP  - 1
EP  - 50
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_5_a0/
LA  - en
ID  - AA_2021_33_5_a0
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Problems on the loss of heat: herd instinct versus individual feelings
%J Algebra i analiz
%D 2021
%P 1-50
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_5_a0/
%G en
%F AA_2021_33_5_a0
A. Yu. Solynin. Problems on the loss of heat: herd instinct versus individual feelings. Algebra i analiz, Tome 33 (2021) no. 5, pp. 1-50. http://geodesic.mathdoc.fr/item/AA_2021_33_5_a0/

[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Nat. Bureau Standards Appl. Math. Ser., 55, U.S. Gov. Print. Office, Washington, D.C., 1964 | MR

[2] Axler S., Bourdon P., Ramey W., Harmonic function theory, Grad. Texts in Math., 137, Second ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[3] Baernstein II A., Symmetrization in analysis, New Math. Monogr., 36, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl

[4] Baernstein II A., Eremenko A., Fryntov A., Solynin A., “Sharp estimates for hyperbolic metrics and covering theorems of Landau type”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 113–133 | MR | Zbl

[5] Baernstein II A., Solynin A., “Monotonicity and comparison results for conformal invariants”, Rev. Mat. Iberoam., 29:1 (2013), 91–113 | DOI | MR | Zbl

[6] Brock F., Solynin A. Yu., “An approach to symmetrization via polarization”, Trans. Amer. Math. Soc., 352:4 (2000), 1759–1796 | DOI | MR | Zbl

[7] Dubinin V. N., “Ob izmenenii garmonicheskoi mery pri simmetrizatsii”, Mat. sb., 124:2 (1984), 272–279 | MR | Zbl

[8] Dubinin V. N., “Preobrazovanie funktsii i printsip Dirikhle”, Mat. zametki, 38:1 (1985), 49–55 | MR | Zbl

[9] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Springer, Basel, 2014 | MR | Zbl

[10] Eremenko A., Sleeping armadillos and Dirichlet's principle, , December 13 2003 www.math.purdue.edu/ẽremenko/dvi/armadillo.pdf | Zbl

[11] Glasser M. L., “Problem $77$-$5$. A conjectured increasing infinite series”, SIAM Review, 19:1 (1977), 148 | DOI

[12] Glasser M. L., Davison S. G., “A bundling problem”, SIAM Review, 20 (1978), 178–180 | DOI | MR

[13] Hayman W. K., Subharmonic functions, v. 2, London Math. Soc. Monogr., 20, Acad. Press, Inc., London, 1989 | MR | Zbl

[14] Ivanishvili P., A bundling problem revisited, , 2 Feb 2016 1602.00983v1 [math.AP] | Zbl

[15] Korevaar J., “Electrostatic fields due to distributions of electrons”, Ann. Fac. Sci. Toulouse Math., 6, Special issue (1996), 57–76 | DOI | MR | Zbl

[16] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[17] Lebedev N. N., Skalskaya I. P., Uflyand Y. S., Problems of mathematical physics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965 | MR | Zbl

[18] Pólya G., Szegö G., Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, 1952 | MR

[19] Pucci P., Serrin J., The maximum principle, Progr. Nonlinear Differential Equations Appl., 73, Birkhäuser Verlag, Basel, 2007 | DOI | MR | Zbl

[20] Ransford Th., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[21] Schwartz R., The $5$ electron case of Thomson's problem, 2010, arXiv: 1001.3702 [math.MG] | MR

[22] Solynin A. Yu., “Functional inequalities via polarization”, Algebra i analiz, 7:1 (1996), 148–185 | MR

[23] SolyninA.Yu., “Garmonicheskaya mera radialnykh otrezkov i simmetrizatsiya”, Mat. sb., 189:11 (1998), 121–138 | MR

[24] Szpiro G., https://plus.maths.org/content/newton-and-kissing-problem

[25] Todor R. A., Semin. Ang. Math., Res. Rep. No 2004-10, Eidgenössische Tech. Hochschule, CH-8092, Zürich, October 2004

[26] Wermer J., Potential theory, Lecture Notes in Math., 408, Springer-Verlag, Berlin, 1974 | MR | Zbl

[27] Wolontis V., “Properties of conformal invariants”, Amer. J. Math., 74 (1952), 587–606 | DOI | MR | Zbl