Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_5_a0, author = {A. Yu. Solynin}, title = {Problems on the loss of heat: herd instinct versus individual feelings}, journal = {Algebra i analiz}, pages = {1--50}, publisher = {mathdoc}, volume = {33}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_5_a0/} }
A. Yu. Solynin. Problems on the loss of heat: herd instinct versus individual feelings. Algebra i analiz, Tome 33 (2021) no. 5, pp. 1-50. http://geodesic.mathdoc.fr/item/AA_2021_33_5_a0/
[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Nat. Bureau Standards Appl. Math. Ser., 55, U.S. Gov. Print. Office, Washington, D.C., 1964 | MR
[2] Axler S., Bourdon P., Ramey W., Harmonic function theory, Grad. Texts in Math., 137, Second ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[3] Baernstein II A., Symmetrization in analysis, New Math. Monogr., 36, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl
[4] Baernstein II A., Eremenko A., Fryntov A., Solynin A., “Sharp estimates for hyperbolic metrics and covering theorems of Landau type”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 113–133 | MR | Zbl
[5] Baernstein II A., Solynin A., “Monotonicity and comparison results for conformal invariants”, Rev. Mat. Iberoam., 29:1 (2013), 91–113 | DOI | MR | Zbl
[6] Brock F., Solynin A. Yu., “An approach to symmetrization via polarization”, Trans. Amer. Math. Soc., 352:4 (2000), 1759–1796 | DOI | MR | Zbl
[7] Dubinin V. N., “Ob izmenenii garmonicheskoi mery pri simmetrizatsii”, Mat. sb., 124:2 (1984), 272–279 | MR | Zbl
[8] Dubinin V. N., “Preobrazovanie funktsii i printsip Dirikhle”, Mat. zametki, 38:1 (1985), 49–55 | MR | Zbl
[9] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Springer, Basel, 2014 | MR | Zbl
[10] Eremenko A., Sleeping armadillos and Dirichlet's principle, , December 13 2003 www.math.purdue.edu/ẽremenko/dvi/armadillo.pdf | Zbl
[11] Glasser M. L., “Problem $77$-$5$. A conjectured increasing infinite series”, SIAM Review, 19:1 (1977), 148 | DOI
[12] Glasser M. L., Davison S. G., “A bundling problem”, SIAM Review, 20 (1978), 178–180 | DOI | MR
[13] Hayman W. K., Subharmonic functions, v. 2, London Math. Soc. Monogr., 20, Acad. Press, Inc., London, 1989 | MR | Zbl
[14] Ivanishvili P., A bundling problem revisited, , 2 Feb 2016 1602.00983v1 [math.AP] | Zbl
[15] Korevaar J., “Electrostatic fields due to distributions of electrons”, Ann. Fac. Sci. Toulouse Math., 6, Special issue (1996), 57–76 | DOI | MR | Zbl
[16] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[17] Lebedev N. N., Skalskaya I. P., Uflyand Y. S., Problems of mathematical physics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965 | MR | Zbl
[18] Pólya G., Szegö G., Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, 1952 | MR
[19] Pucci P., Serrin J., The maximum principle, Progr. Nonlinear Differential Equations Appl., 73, Birkhäuser Verlag, Basel, 2007 | DOI | MR | Zbl
[20] Ransford Th., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[21] Schwartz R., The $5$ electron case of Thomson's problem, 2010, arXiv: 1001.3702 [math.MG] | MR
[22] Solynin A. Yu., “Functional inequalities via polarization”, Algebra i analiz, 7:1 (1996), 148–185 | MR
[23] SolyninA.Yu., “Garmonicheskaya mera radialnykh otrezkov i simmetrizatsiya”, Mat. sb., 189:11 (1998), 121–138 | MR
[24] Szpiro G., https://plus.maths.org/content/newton-and-kissing-problem
[25] Todor R. A., Semin. Ang. Math., Res. Rep. No 2004-10, Eidgenössische Tech. Hochschule, CH-8092, Zürich, October 2004
[26] Wermer J., Potential theory, Lecture Notes in Math., 408, Springer-Verlag, Berlin, 1974 | MR | Zbl
[27] Wolontis V., “Properties of conformal invariants”, Amer. J. Math., 74 (1952), 587–606 | DOI | MR | Zbl