Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_4_a8, author = {J. Esterle}, title = {Do some nontrivial closed $z$-invariant subspaces have the division property?}, journal = {Algebra i analiz}, pages = {173--209}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a8/} }
J. Esterle. Do some nontrivial closed $z$-invariant subspaces have the division property?. Algebra i analiz, Tome 33 (2021) no. 4, pp. 173-209. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a8/
[1] Ambrozie C., Müller V., “Invariant subspaces for polynomially bounded operators”, J. Func. Anal., 213:2 (2004), 321–345 | DOI | MR | Zbl
[2] Atzmon A., “Entire functions, invariant subspaces and Fourier transforms”, Israel Math. Conf. Proc., 11, Bar-Ilan Univ., Ramat Gan, 1997, 37–52 | MR | Zbl
[3] Bercovici H., “Factorization theorems and the structure of operators on Hilbert spaces”, Ann. Math. (2), 128:2 (1988), 399–413 | DOI | MR | Zbl
[4] Bereinstein C. A., Gay R., Complex analysis and special topics in harmonic analysis, Springer-Verlag, New York, 1995 | MR
[5] A. Borichev, “Granichnye teoremy edinstvennosti dlya pochti analiticheskikh funktsii i asimmetrichnye algebry posledovatelnostei”, Mat. sb., 136:3 (1988), 324–340 | Zbl
[6] Borichev A., “Invariant subspaces of given index in Banach spaces of analytic functions”, J. Reine Angew. Math., 505 (1998), 23–44 | DOI | MR | Zbl
[7] Borichev A., Hedenmalm H., “Completeness of translates in weighted spaces on the half-line”, Acta Math., 174 (1995), 1–84 | DOI | MR | Zbl
[8] Borichev A., Hedenmalm H., Volberg A., “Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index”, J. Funct. Anal., 207 (2004), 111–160 | DOI | MR | Zbl
[9] Borichev A. A., Volberg A. L., “Teoremy edinstvennosti dlya pochti analiticheskikh funktsii”, Algebra i analiz, 1:1 (1989), 146–177
[10] Cartwright M. L., “On analytic functions regular in the unit circle II”, Quart. J. Math. Oxford, 6 (1935), 94–105 | DOI | MR
[11] Cerezo A., “Le cas d'une variable complexe”, Hyperfunctions and theoretical physics, Lecture Notes in Math., 449, Springer-Verlag, Berlin, 1975, 5–20 | MR
[12] Chevreau B., “On contraction operators with isometric functional calculus”, J. Operator Theory, 20:2 (1988), 269–293 | MR | Zbl
[13] Dynkin E. M., “Funktsii s dannoi otsenkoi ${\partial f \over \partial{\overline z}}$ i teorema N. Levinsona”, Mat. sb., 81:2 (1972), 182–190
[14] Esterle J., “Singular inner functions and biinvariant subspaces for dissymetric weighted shifts”, J. Func. Anal., 144 (1997), 64–104 | DOI | MR | Zbl
[15] Esterle J., “Exact factorization never holds for Banach spaces of sequences on $\mathbb{Z}$”, Algebra i analiz, 12:5 (2001), 869–874 | MR | Zbl
[16] Esterle J., Gay R., “Product of hyperfunctions on the circle”, Israel J. Math., 116 (2000), 271–283 | DOI | MR | Zbl
[17] Esterle J., Volberg A., “Analytic left-invariant subspaces of weighted Hilbert spaces of sequences”, J. Operator Theory, 45:2 (2001), 265–301 | MR | Zbl
[18] Esterle J., Volberg A., “Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences”, Ann. Sci. École. Norm. Sup. (4), 35:2 (2002), 185–230 | DOI | MR | Zbl
[19] Grivaux S., Roginskaya M., “A general approach to Read's type construction of operators without invariant closed subspaces”, Proc. London Math. Soc. (3), 109:3 (2014), 596–652 | DOI | MR | Zbl
[20] Hayman W. K., Korenblum B., “An extension of the Riesz–Herglotz formula”, Ann. Acad. Sci. Fenn. Ser. A Math., 2 (1976), 175–201 | DOI | MR | Zbl
[21] Helson H., Lectures on invariant subspaces, Acad. Press, New York-London, 1964 | MR | Zbl
[22] Linden C. N., “Function regular in the unit circle”, Proc. Cambridge Philos. Soc., 52 (1956), 49–60 | DOI | MR | Zbl
[23] Linden C. N., “The representation of regular functions”, J. London Math. Soc., 39 (1964), 19–30 | DOI | MR | Zbl
[24] Matsaev V. I., Mogulskii E. Z., “Teorema deleniya dlya analiticheskikh funktsii s zadannoi mazhorantoi i nekotorye ee prilozheniya”, Zap. nauch. semin. LOMI, 56, 1976, 73–89 | Zbl
[25] Michael E. A., “Locally multiplicatively-convex topological algebras”, Mem. Amer. Math. Soc., 11, 1952, 1–79 | MR
[26] Momm S., “Lower bounds for the modulus of an analytic function”, Bull. London Math. Soc., 22:3 (1990), 239–244 | DOI | MR | Zbl
[27] Nikolskii N .K., “Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza”, Tr. Mat. in-ta AN SSSR, 120, 1974, 3–272
[28] Pietsch A., Nuclear locally convex spaces, Ergeb. Math. Grenzgeb., 66, Springer-Verlag, New York, 1972 | MR | Zbl
[29] Read C., “A short proof concerning the invariant subspace problem”, J. London Math. Soc. (2), 34:2 (1986), 335–348 | DOI | MR | Zbl