Do some nontrivial closed $z$-invariant subspaces have the division property?
Algebra i analiz, Tome 33 (2021) no. 4, pp. 173-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Banach spaces $E$ of functions holomorphic on the open unit disk $\mathbb{D}$ are considered such that the unilateral shift $S$ and the backward shift $T$ are bounded on $E$. Under the assumption that the spectra of $S$ and $T$ are equal to the closed unit disk, the existence is discussed of closed $z$-invariant subspaces $N$ of $E$ having the “division property,” which means that the function $f_{\lambda}\colon z \mapsto {f(z)\over z-\lambda}$ belongs to $N$ for every $\lambda \in \mathbb{D}$ and for every $f \in N$ with $f(\lambda)=0$. This question is related to the existence of nontrivial bi-invariant subspaces of Banach spaces of hyperfunctions on the unit circle $\mathbb{T}$.
Keywords: unilateral shift, backward shift, division property, invariant subspace, bi-invariant subspace.
@article{AA_2021_33_4_a8,
     author = {J. Esterle},
     title = {Do some nontrivial closed $z$-invariant subspaces have the division property?},
     journal = {Algebra i analiz},
     pages = {173--209},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a8/}
}
TY  - JOUR
AU  - J. Esterle
TI  - Do some nontrivial closed $z$-invariant subspaces have the division property?
JO  - Algebra i analiz
PY  - 2021
SP  - 173
EP  - 209
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_4_a8/
LA  - en
ID  - AA_2021_33_4_a8
ER  - 
%0 Journal Article
%A J. Esterle
%T Do some nontrivial closed $z$-invariant subspaces have the division property?
%J Algebra i analiz
%D 2021
%P 173-209
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_4_a8/
%G en
%F AA_2021_33_4_a8
J. Esterle. Do some nontrivial closed $z$-invariant subspaces have the division property?. Algebra i analiz, Tome 33 (2021) no. 4, pp. 173-209. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a8/

[1] Ambrozie C., Müller V., “Invariant subspaces for polynomially bounded operators”, J. Func. Anal., 213:2 (2004), 321–345 | DOI | MR | Zbl

[2] Atzmon A., “Entire functions, invariant subspaces and Fourier transforms”, Israel Math. Conf. Proc., 11, Bar-Ilan Univ., Ramat Gan, 1997, 37–52 | MR | Zbl

[3] Bercovici H., “Factorization theorems and the structure of operators on Hilbert spaces”, Ann. Math. (2), 128:2 (1988), 399–413 | DOI | MR | Zbl

[4] Bereinstein C. A., Gay R., Complex analysis and special topics in harmonic analysis, Springer-Verlag, New York, 1995 | MR

[5] A. Borichev, “Granichnye teoremy edinstvennosti dlya pochti analiticheskikh funktsii i asimmetrichnye algebry posledovatelnostei”, Mat. sb., 136:3 (1988), 324–340 | Zbl

[6] Borichev A., “Invariant subspaces of given index in Banach spaces of analytic functions”, J. Reine Angew. Math., 505 (1998), 23–44 | DOI | MR | Zbl

[7] Borichev A., Hedenmalm H., “Completeness of translates in weighted spaces on the half-line”, Acta Math., 174 (1995), 1–84 | DOI | MR | Zbl

[8] Borichev A., Hedenmalm H., Volberg A., “Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index”, J. Funct. Anal., 207 (2004), 111–160 | DOI | MR | Zbl

[9] Borichev A. A., Volberg A. L., “Teoremy edinstvennosti dlya pochti analiticheskikh funktsii”, Algebra i analiz, 1:1 (1989), 146–177

[10] Cartwright M. L., “On analytic functions regular in the unit circle II”, Quart. J. Math. Oxford, 6 (1935), 94–105 | DOI | MR

[11] Cerezo A., “Le cas d'une variable complexe”, Hyperfunctions and theoretical physics, Lecture Notes in Math., 449, Springer-Verlag, Berlin, 1975, 5–20 | MR

[12] Chevreau B., “On contraction operators with isometric functional calculus”, J. Operator Theory, 20:2 (1988), 269–293 | MR | Zbl

[13] Dynkin E. M., “Funktsii s dannoi otsenkoi ${\partial f \over \partial{\overline z}}$ i teorema N. Levinsona”, Mat. sb., 81:2 (1972), 182–190

[14] Esterle J., “Singular inner functions and biinvariant subspaces for dissymetric weighted shifts”, J. Func. Anal., 144 (1997), 64–104 | DOI | MR | Zbl

[15] Esterle J., “Exact factorization never holds for Banach spaces of sequences on $\mathbb{Z}$”, Algebra i analiz, 12:5 (2001), 869–874 | MR | Zbl

[16] Esterle J., Gay R., “Product of hyperfunctions on the circle”, Israel J. Math., 116 (2000), 271–283 | DOI | MR | Zbl

[17] Esterle J., Volberg A., “Analytic left-invariant subspaces of weighted Hilbert spaces of sequences”, J. Operator Theory, 45:2 (2001), 265–301 | MR | Zbl

[18] Esterle J., Volberg A., “Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences”, Ann. Sci. École. Norm. Sup. (4), 35:2 (2002), 185–230 | DOI | MR | Zbl

[19] Grivaux S., Roginskaya M., “A general approach to Read's type construction of operators without invariant closed subspaces”, Proc. London Math. Soc. (3), 109:3 (2014), 596–652 | DOI | MR | Zbl

[20] Hayman W. K., Korenblum B., “An extension of the Riesz–Herglotz formula”, Ann. Acad. Sci. Fenn. Ser. A Math., 2 (1976), 175–201 | DOI | MR | Zbl

[21] Helson H., Lectures on invariant subspaces, Acad. Press, New York-London, 1964 | MR | Zbl

[22] Linden C. N., “Function regular in the unit circle”, Proc. Cambridge Philos. Soc., 52 (1956), 49–60 | DOI | MR | Zbl

[23] Linden C. N., “The representation of regular functions”, J. London Math. Soc., 39 (1964), 19–30 | DOI | MR | Zbl

[24] Matsaev V. I., Mogulskii E. Z., “Teorema deleniya dlya analiticheskikh funktsii s zadannoi mazhorantoi i nekotorye ee prilozheniya”, Zap. nauch. semin. LOMI, 56, 1976, 73–89 | Zbl

[25] Michael E. A., “Locally multiplicatively-convex topological algebras”, Mem. Amer. Math. Soc., 11, 1952, 1–79 | MR

[26] Momm S., “Lower bounds for the modulus of an analytic function”, Bull. London Math. Soc., 22:3 (1990), 239–244 | DOI | MR | Zbl

[27] Nikolskii N .K., “Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza”, Tr. Mat. in-ta AN SSSR, 120, 1974, 3–272

[28] Pietsch A., Nuclear locally convex spaces, Ergeb. Math. Grenzgeb., 66, Springer-Verlag, New York, 1972 | MR | Zbl

[29] Read C., “A short proof concerning the invariant subspace problem”, J. London Math. Soc. (2), 34:2 (1986), 335–348 | DOI | MR | Zbl