The set of zeros of the Riemann zeta function as the point spectrum of an operator
Algebra i analiz, Tome 33 (2021) no. 4, pp. 107-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_4_a4,
     author = {V. V. Kapustin},
     title = {The set of zeros of the {Riemann} zeta function as the point spectrum of an operator},
     journal = {Algebra i analiz},
     pages = {107--124},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a4/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - The set of zeros of the Riemann zeta function as the point spectrum of an operator
JO  - Algebra i analiz
PY  - 2021
SP  - 107
EP  - 124
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_4_a4/
LA  - ru
ID  - AA_2021_33_4_a4
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T The set of zeros of the Riemann zeta function as the point spectrum of an operator
%J Algebra i analiz
%D 2021
%P 107-124
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_4_a4/
%G ru
%F AA_2021_33_4_a4
V. V. Kapustin. The set of zeros of the Riemann zeta function as the point spectrum of an operator. Algebra i analiz, Tome 33 (2021) no. 4, pp. 107-124. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a4/

[1] Romanov R., Canonical systems and de Branges spaces, Lecture Notes in Math. (to appear)

[2] Kats I. S., Krein M. G., “Kriterii diskretnosti spektra singulyarnoi struny”, Izv. vuzov. Mat., 1958, no. 2, 136–153

[3] Romanov R., Woracek H., “Canonical systems with discrete spectrum”, J. Funct. Anal., 278:4 (2020), 108318 | DOI | MR | Zbl

[4] Lagarias J. C., “The Schrödinger operator with Morse potential on the right half-line”, Commun. Number Theory Phys., 3:2 (2009), 323–361 | DOI | MR | Zbl

[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1974

[6] Pólya G., “Über trigonometrische Integrale mit nur reellen Nullstellen”, J. Reine Angew. Math., 158 (1927), 6–18 | MR | Zbl

[7] Olver F. W. J., Asymptotics and special functions, Comp. Sci. Appl. Math., Acad. Press, New York, 1974 | MR