Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_4_a4, author = {V. V. Kapustin}, title = {The set of zeros of the {Riemann} zeta function as the point spectrum of an operator}, journal = {Algebra i analiz}, pages = {107--124}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_4_a4/} }
V. V. Kapustin. The set of zeros of the Riemann zeta function as the point spectrum of an operator. Algebra i analiz, Tome 33 (2021) no. 4, pp. 107-124. http://geodesic.mathdoc.fr/item/AA_2021_33_4_a4/
[1] Romanov R., Canonical systems and de Branges spaces, Lecture Notes in Math. (to appear)
[2] Kats I. S., Krein M. G., “Kriterii diskretnosti spektra singulyarnoi struny”, Izv. vuzov. Mat., 1958, no. 2, 136–153
[3] Romanov R., Woracek H., “Canonical systems with discrete spectrum”, J. Funct. Anal., 278:4 (2020), 108318 | DOI | MR | Zbl
[4] Lagarias J. C., “The Schrödinger operator with Morse potential on the right half-line”, Commun. Number Theory Phys., 3:2 (2009), 323–361 | DOI | MR | Zbl
[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1974
[6] Pólya G., “Über trigonometrische Integrale mit nur reellen Nullstellen”, J. Reine Angew. Math., 158 (1927), 6–18 | MR | Zbl
[7] Olver F. W. J., Asymptotics and special functions, Comp. Sci. Appl. Math., Acad. Press, New York, 1974 | MR