Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_3_a5, author = {A. Laurin\v{c}ikas and G. Vadeikis}, title = {Joint weighted universality of the {Hurwitz} zeta-functions}, journal = {Algebra i analiz}, pages = {111--128}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_3_a5/} }
A. Laurinčikas; G. Vadeikis. Joint weighted universality of the Hurwitz zeta-functions. Algebra i analiz, Tome 33 (2021) no. 3, pp. 111-128. http://geodesic.mathdoc.fr/item/AA_2021_33_3_a5/
[1] Balčiūnas A., Vadeikis G., “A weighted universality theorem for the Hurwitz zeta-function”, Šiauliai Math. Semin., 12:20 (2017), 5–18
[2] Bagchi B., The statistical behavior and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Stat. Institute, Calcutta, 1981
[3] Billingsley P., Convergence of probability measures, John Wiley Sons, Inc., 1968 | MR | Zbl
[4] Conway J. B., Functions of one complex variable, Grad. Texts in Math., 11, 2nd ed., Springer-Verlag, New York, 1978 | DOI | MR
[5] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, Univ. Michigan, Ann Arbor, 1979 | MR
[6] Laurinčikas A., “The joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl
[7] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[8] Macaitiené R., Stoncelis M., Šiaučiūnas D., “A weighted universality theorem for periodic zeta-functions”, Math. Model. Anal., 22:1 (2017), 95–105 | DOI | MR
[9] Macaitiené R., Stoncelis M., Šiaučiūnas D., “A weighted discrete universality theorem for periodic zeta-functions. II”, Math. Model. Anal., 22:6 (2017), 750–762 | DOI | MR
[10] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 7:2 (1952), 31–122 | MR | Zbl