Diagonal complexes for surfaces of finite type and surfaces with involution
Algebra i analiz, Tome 33 (2021) no. 3, pp. 51-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two constructions are studied that are inspired by the ideas of a recent paper by the authors. — The diagonal complex $\mathcal{D}$ and its barycentric subdivision $\mathcal{BD}$ related to an oriented surface of finite type $F$ equipped with a number of labeled marked points. This time, unlike the paper mentioned above, boundary components without marked points are allowed, called holes. — The symmetric diagonal complex $\mathcal{D}^{\text{inv}}$ and its barycentric subdivision $\mathcal{BD}^{\text{inv}}$ related to a symmetric (=with an involution) oriented surface $F$ equipped with a number of (symmetrically placed) labeled marked points. The symmetric complex is shown to be homotopy equivalent to the complex of a surface obtained by “taking a half” of the initial symmetric surface.
Keywords: moduli space, ribbon graphs, curve complex, associahedron.
@article{AA_2021_33_3_a2,
     author = {G. Panina and J. Gordon},
     title = {Diagonal complexes for surfaces of finite type and surfaces with involution},
     journal = {Algebra i analiz},
     pages = {51--72},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_3_a2/}
}
TY  - JOUR
AU  - G. Panina
AU  - J. Gordon
TI  - Diagonal complexes for surfaces of finite type and surfaces with involution
JO  - Algebra i analiz
PY  - 2021
SP  - 51
EP  - 72
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_3_a2/
LA  - en
ID  - AA_2021_33_3_a2
ER  - 
%0 Journal Article
%A G. Panina
%A J. Gordon
%T Diagonal complexes for surfaces of finite type and surfaces with involution
%J Algebra i analiz
%D 2021
%P 51-72
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_3_a2/
%G en
%F AA_2021_33_3_a2
G. Panina; J. Gordon. Diagonal complexes for surfaces of finite type and surfaces with involution. Algebra i analiz, Tome 33 (2021) no. 3, pp. 51-72. http://geodesic.mathdoc.fr/item/AA_2021_33_3_a2/

[1] Bott R., Taubes C., “On the self-linking of knots”, J. Math. Phys., 35:10 (1994), 5247–5287 | DOI | MR | Zbl

[2] Carr M., Devadoss S., “Coxeter complexes and graph-associahedra”, Topology Appl., 153:12 (2006), 2155–2168 | DOI | MR | Zbl

[3] Gordon I. A., Panina G. Yu., “Diagonalnye kompleksy”, Izv. RAN. Ser. mat., 82:5 (2018), 3–22 | MR | Zbl

[4] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. of Math. (2), 158:3 (2003), 977–1018 | DOI | MR | Zbl

[5] Frappat L., Sciarrino A., Sorba P., Dictionary on Lie algebras and superalgebras, Acad. Press, San Diego, CA, 2000 | MR | Zbl

[6] Forman R., “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl

[7] Forman R., “A user's guide to discrete Morse theory”, Sém. Lothar. Combin., 48 (2002), B48c | MR | Zbl

[8] Hatcher A., Algebraic topology, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[9] Harer J. L., “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math., 84:1 (1986), 157–176 | DOI | MR | Zbl

[10] Harvey W. J., “Boundary structure of the modular group”, Riemann surfaces and related topics, Proc. Stony Brook Conf. (Stony Brook, NY, 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 245–251 | MR

[11] Igusa K., “Combinatorial Miller–Morita–Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4:1 (2004), 473–520 | DOI | MR | Zbl

[12] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[13] Korkmaz M., Papadopulos A., “On the arc and curve complex of a surface”, Math. Proc. Cambridge Philos. Soc., 148:3 (2010), 473–483 | DOI | MR | Zbl

[14] Lando S., Zvonkine A., Graphs on surfaces and their applications, Encyclopaedia Math. Sci., 141, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[15] Mulase M., Penkava M., “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\bar{Q}$”, Asian J. Math., 2:4 (1998), 875–920 | DOI | MR

[16] Panina G., “Diagonal complexes for holetured polygons”, Zap. nauch. semin. POMI, 448, 2016, 246–251 | MR

[17] Penner R. C., “The structure and singularities of quotient arc complexes”, J. Topol., 1:3 (2008), 527–550 | DOI | MR | Zbl

[18] Penner R. C., “Decorated Teichmüller theory of bordered surfaces”, Comm. Anal. Geom., 12:4 (2004), 793–820 | DOI | MR | Zbl

[19] Quillen D., “Higher algebraic K-theory I”, Algebraic K-theory, I: Higher K-theories, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash, 1972), Lecture Notes in Math., 341, Springer, Berlin, 1973, 85–147 | DOI | MR

[20] Stasheff J., “Homotopy associativity of $H$-spaces. I, II”, Trans. Amer. Math. Soc., 108 (1963), 293–312 | MR | Zbl

[21] Thurston W. P., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc., 19:2 (1988), 417–431 | DOI | MR | Zbl

[22] Wachs M., Poset topology: tools and applications, arXiv: math/0602226 | MR