Scattering of a surface wave in a polygonal domain with impedance boundary
Algebra i analiz, Tome 33 (2021) no. 2, pp. 98-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional (2D) domain under study is bounded from below by two semi-infinite and, between them, two finite straight lines; on each of the straight lines (segments), a usually different impedance boundary condition is imposed. An incident surface wave, propagating from infinity along one semi-infinite segment of the polygonal domain, excites outgoing surface waves both on the same segment (a reflected wave) and on the second semi-infinite segment (a transmitted wave); in addition, a circular (cylindrical) outgoing wave will be generated in the far field. The scattered wave field satisfies the Helmholtz equation and the Robin (in other words, impedance) boundary conditions as well as some special integral form of the Sommerfeld radiation conditions. It is shown that a classical solution of the problem is unique. By the use of some known extension of the Sommerfeld–Malyuzhinets technique, the problem is reduced to functional Malyuzhinets equations and then to a system of integral equations of the second kind with the integral operator depending on a characteristic parameter. The Fredholm property of the equations is established, which also leads to the existence of the solution for noncharacteristic values of the parameter. From the Sommerfeld integral representation of the solution, the far-field asymptotics is developed. Numerical results for the scattering diagram are also presented.
Keywords: surface waves, impedance boundary of a polygon, functional equations, Fredholm integral equation, far-field asymptotics, numerical solution.
@article{AA_2021_33_2_a5,
     author = {M. A. Lyalinov and N. Y. Zhu},
     title = {Scattering of a surface wave in a polygonal domain with impedance boundary},
     journal = {Algebra i analiz},
     pages = {98--135},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a5/}
}
TY  - JOUR
AU  - M. A. Lyalinov
AU  - N. Y. Zhu
TI  - Scattering of a surface wave in a polygonal domain with impedance boundary
JO  - Algebra i analiz
PY  - 2021
SP  - 98
EP  - 135
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a5/
LA  - en
ID  - AA_2021_33_2_a5
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%A N. Y. Zhu
%T Scattering of a surface wave in a polygonal domain with impedance boundary
%J Algebra i analiz
%D 2021
%P 98-135
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_2_a5/
%G en
%F AA_2021_33_2_a5
M. A. Lyalinov; N. Y. Zhu. Scattering of a surface wave in a polygonal domain with impedance boundary. Algebra i analiz, Tome 33 (2021) no. 2, pp. 98-135. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a5/

[1] Gautesen A. K., “Scattering of a Rayleigh wave by an elastic quarter space-revisited”, Wave Motion, 35:1 (2002), 91–98 | DOI | MR | Zbl

[2] Gautesen A. K., “Scattering of a Rayleigh wave by an elastic wedge whose angle is less than $180^\circ$”, Wave Motion, 36:4 (2002), 417–424 | DOI | MR | Zbl

[3] Fujii K., “Rayleigh-wave scattering of various wedge corners: Investigation in the wider range of wedge angles”, Bull. Seismol. Soc. Amer., 84 (1994), 1916–1924

[4] Croisille J.-P., Lebeau G., Diffraction by an immersed elastic wedge, Lecture Notes in Math., 1723, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[5] Babich V. M., Mokeeva N. V., Samokish B. A., “The problem of scattering of a plane wave by a transparent wedge: a computational approach”, J. Comm. Technol. Electron., 57 (2012), 993–1000 | DOI

[6] Kamotski V. V., Lebeau G., “Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2006 (2065), 289–317 | MR

[7] Rawlins A. D., “Diffraction by, or diffusion into, a penetrable wedge”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2655–2686 | DOI | MR | Zbl

[8] Salem M. A., Kamel A. H., Osipov A. V., “Electromagnetic fields in the presence of an infinite dielectric wedge”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2072 (2006), 2503–2522 | MR | Zbl

[9] Jones D. S., “Rawlins' method and the diaphanous cone”, Quart. J. Mech. Appl. Math., 53:1 (2000), 91–109 | DOI | MR | Zbl

[10] Lyalinov M. A., “Acoustic scattering of a plane wave by a circular penetrable cone”, Wave Motion, 48:1 (2011), 62–82 | DOI | MR | Zbl

[11] Bernard J-M. L., Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique\textup: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Dist-Saclay, 1997; extended version Advanced Theory of Diffraction by a Semi-infinite Impedance Cone, Alpha Sci. Ser., Wave Phenom., Alpha Sci., Oxford, 2014

[12] Bernard J-M. L., Lyalinov M. A., “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33:2 (2001), 155–181 | DOI | MR | Zbl

[13] Lyalinov M. A., Zhu N. Y., Scattering of waves by wedges and cones with impedance boundary conditions, Mario Boella Ser. Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012

[14] Budaev B. V., Diffraction by wedges, Pitman Research Note in Math., 322, Longman Sci. and Tech., Essex, 1995 | MR | Zbl

[15] Babich V. M., Lyalinov M. A., Grikurov V. E., Diffraction theory. The Sommerfeld–Malyuzhinets technique, Alpha Sci. Ser. Wave Phenom., Alpha Sci., Oxford, 2008

[16] Kravtsov Y. A., Zhu N. Y., Theory of diffraction. Heuristic approach, Alpha Sci. Ser. Wave Phenom., Alpha Sci., Oxford, 2010

[17] Borovikov V. A., Difraktsiya na mnogougolnikakh i mnogogrannikakh, Nauka, M., 1966

[18] Bernard J.-M. L., “A spectral approach for scattering by impedance polygons”, Quart. J. Mech. Appl. Math., 59:4 (2006), 517–550 | DOI | MR | Zbl

[19] Fokas A. S., “Two dimensional linear partial differential equations in a convex polygon”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457:2006 (2001), 371–393 | DOI | MR | Zbl

[20] Budaev B. V., Bogy D. B., “Diffraction by a convex polygon with side-wise constant impedance”, Wave Motion, 43:8 (2006), 631–645 | DOI | MR | Zbl

[21] Lyalinov M. A., “Integralnye uravneniya i diagramma rasseyaniya v zadache difraktsii na dvukh sdvinutykh vdol linii kontakta klinyakh s mnogougolnoi granitsei”, Zap. nauch. semin. POMI, 426, 2014, 119–139

[22] Malyuzhinets G. D., “Formula obrascheniya dlya integrala Zommerfelda”, Dokl. AN SSSR, 118:6 (1958), 1099–1102 | MR | Zbl

[23] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994