Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_2_a5, author = {M. A. Lyalinov and N. Y. Zhu}, title = {Scattering of a surface wave in a polygonal domain with impedance boundary}, journal = {Algebra i analiz}, pages = {98--135}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a5/} }
M. A. Lyalinov; N. Y. Zhu. Scattering of a surface wave in a polygonal domain with impedance boundary. Algebra i analiz, Tome 33 (2021) no. 2, pp. 98-135. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a5/
[1] Gautesen A. K., “Scattering of a Rayleigh wave by an elastic quarter space-revisited”, Wave Motion, 35:1 (2002), 91–98 | DOI | MR | Zbl
[2] Gautesen A. K., “Scattering of a Rayleigh wave by an elastic wedge whose angle is less than $180^\circ$”, Wave Motion, 36:4 (2002), 417–424 | DOI | MR | Zbl
[3] Fujii K., “Rayleigh-wave scattering of various wedge corners: Investigation in the wider range of wedge angles”, Bull. Seismol. Soc. Amer., 84 (1994), 1916–1924
[4] Croisille J.-P., Lebeau G., Diffraction by an immersed elastic wedge, Lecture Notes in Math., 1723, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[5] Babich V. M., Mokeeva N. V., Samokish B. A., “The problem of scattering of a plane wave by a transparent wedge: a computational approach”, J. Comm. Technol. Electron., 57 (2012), 993–1000 | DOI
[6] Kamotski V. V., Lebeau G., “Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2006 (2065), 289–317 | MR
[7] Rawlins A. D., “Diffraction by, or diffusion into, a penetrable wedge”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2655–2686 | DOI | MR | Zbl
[8] Salem M. A., Kamel A. H., Osipov A. V., “Electromagnetic fields in the presence of an infinite dielectric wedge”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2072 (2006), 2503–2522 | MR | Zbl
[9] Jones D. S., “Rawlins' method and the diaphanous cone”, Quart. J. Mech. Appl. Math., 53:1 (2000), 91–109 | DOI | MR | Zbl
[10] Lyalinov M. A., “Acoustic scattering of a plane wave by a circular penetrable cone”, Wave Motion, 48:1 (2011), 62–82 | DOI | MR | Zbl
[11] Bernard J-M. L., Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique\textup: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Dist-Saclay, 1997; extended version Advanced Theory of Diffraction by a Semi-infinite Impedance Cone, Alpha Sci. Ser., Wave Phenom., Alpha Sci., Oxford, 2014
[12] Bernard J-M. L., Lyalinov M. A., “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33:2 (2001), 155–181 | DOI | MR | Zbl
[13] Lyalinov M. A., Zhu N. Y., Scattering of waves by wedges and cones with impedance boundary conditions, Mario Boella Ser. Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012
[14] Budaev B. V., Diffraction by wedges, Pitman Research Note in Math., 322, Longman Sci. and Tech., Essex, 1995 | MR | Zbl
[15] Babich V. M., Lyalinov M. A., Grikurov V. E., Diffraction theory. The Sommerfeld–Malyuzhinets technique, Alpha Sci. Ser. Wave Phenom., Alpha Sci., Oxford, 2008
[16] Kravtsov Y. A., Zhu N. Y., Theory of diffraction. Heuristic approach, Alpha Sci. Ser. Wave Phenom., Alpha Sci., Oxford, 2010
[17] Borovikov V. A., Difraktsiya na mnogougolnikakh i mnogogrannikakh, Nauka, M., 1966
[18] Bernard J.-M. L., “A spectral approach for scattering by impedance polygons”, Quart. J. Mech. Appl. Math., 59:4 (2006), 517–550 | DOI | MR | Zbl
[19] Fokas A. S., “Two dimensional linear partial differential equations in a convex polygon”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457:2006 (2001), 371–393 | DOI | MR | Zbl
[20] Budaev B. V., Bogy D. B., “Diffraction by a convex polygon with side-wise constant impedance”, Wave Motion, 43:8 (2006), 631–645 | DOI | MR | Zbl
[21] Lyalinov M. A., “Integralnye uravneniya i diagramma rasseyaniya v zadache difraktsii na dvukh sdvinutykh vdol linii kontakta klinyakh s mnogougolnoi granitsei”, Zap. nauch. semin. POMI, 426, 2014, 119–139
[22] Malyuzhinets G. D., “Formula obrascheniya dlya integrala Zommerfelda”, Dokl. AN SSSR, 118:6 (1958), 1099–1102 | MR | Zbl
[23] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994