Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_2_a4, author = {N. Kuznetsov}, title = {Metaharmonic functions: mean flux theorem, its converse and related properties}, journal = {Algebra i analiz}, pages = {82--97}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a4/} }
N. Kuznetsov. Metaharmonic functions: mean flux theorem, its converse and related properties. Algebra i analiz, Tome 33 (2021) no. 2, pp. 82-97. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a4/
[1] Axler S., Bourdon P., Ramey W., Harmonic function theory, Grad. Texts in Math., 137, 2nd ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[2] Beckenbach E. F., Reade M., “Mean values and harmonic polynomials”, Trans. Amer. Math. Soc., 53 (1943), 230–238 | DOI | MR | Zbl
[3] ben-Avraham D., Fokas A. S., “Solution of the modified Helmholtz equation in a triangular domain and an application to diffusion-limited coalescence”, Phys. Rev. E, 64 (2001), 016114 | DOI | MR
[4] Bôcher M., “On harmonic functions in two dimensions”, Proc. Amer. Acad. Arts and Sci., 41 (1906), 557–583
[5] Courant R., Hilbert D., Methods of mathematical physics, v. II, Partial differential equations, Intersci. Publ., New York, 1962 | MR | Zbl
[6] Estrada R., “Characterization of harmonic functions by the behavior of means at a single point”, SN Partial Differ. Equ. Appl., 1:2 (2020), 13 pp.
[7] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl
[8] Haltmeier M., “Universal inversion formulas for recovering a function from spherical means”, SIAM J. Math. Anal., 46:1 (2014), 214–232 | DOI | MR | Zbl
[9] Helmholtz H., “Theorie der Luftschwingungen in Röhren mit offenen Enden”, J. Reine Angew. Math., 57 (1860), 1–72 | MR | Zbl
[10] John F., Plane waves and spherical means applied to partial differential equations, Intersci. Publ., New York, 1955 | MR | Zbl
[11] Kellogg O. D., Foundations of potential theory, Springer, Berlin, 1929 | MR | Zbl
[12] Koebe P., “Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft”, Sitzungsber. Berlin. Math. Gessellschaft, 5 (1906), 39–42 | Zbl
[13] Komech A. I., Merzon A. E., Zhevandrov P. N., “On completeness of Ursells trapping modes”, Russian J. Math. Phys., 4 (1996), 457–486 | MR | Zbl
[14] Kuznetsov N., “Mean value properties of harmonic functions and related topics (a survey)”, J. Math. Sci., 242:2 (2019), 177–199 | DOI | MR | Zbl
[15] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves: a mathematical approach, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[16] Kuznetsov N., Porter R., Evans D. V., Simon M. J., “Uniqueness and trapped modes for surface-piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl
[17] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR
[18] Politis C. G., Papalexandris M. V., Athanassoulis G. A., “A boundary integral equation method for oblique water-wave scattering by cylinders governed by the modified Helmholtz equation”, Appl. Ocean Res., 24 (2002), 215–233 | DOI
[19] Poritsky H., “Generalizations of the Gauss law of the spherical mean”, Trans. Amer. Math. Soc., 43:2 (1938), 199–225 | DOI | MR
[20] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR
[21] Ursell F., “Edge waves on a sloping beach”, Proc. Roy. Soc. London Ser. A, 214 (1952), 79–97 | MR | Zbl
[22] Vekua I. N., “O metagarmonicheskikh funktsiyakh”, Tr. Tbiliss. Mat. In-ta, 12 (1943), 105–175
[23] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, OGIZ, M.–L., 1948 | MR
[24] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 2-e izd. ispr., dop., Nauka, M., 1971 | MR
[25] Watson G. N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944 | MR | Zbl
[26] Weber H., “Über einige bestimmte Integrale”, J. Reine Angew. Math., 69 (1868), 222–237 | MR
[27] Weber H., “Über die Integration der partiellen Differentialgleichung: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + k^2 u = 0$”, Math. Ann., 1 (1869), 1–36 | DOI | MR | Zbl