Metaharmonic functions: mean flux theorem, its converse and related properties
Algebra i analiz, Tome 33 (2021) no. 2, pp. 82-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mean flux theorems are proved for solutions of the Helmholtz equation and its modified version. Also, their converses are considered along with some other properties which generalise those that guarantee harmonicity.
Keywords: metaharmonic function, mean value theorem, mean flux theorem, converse theorems.
@article{AA_2021_33_2_a4,
     author = {N. Kuznetsov},
     title = {Metaharmonic functions: mean flux theorem, its converse and related properties},
     journal = {Algebra i analiz},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_2_a4/}
}
TY  - JOUR
AU  - N. Kuznetsov
TI  - Metaharmonic functions: mean flux theorem, its converse and related properties
JO  - Algebra i analiz
PY  - 2021
SP  - 82
EP  - 97
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_2_a4/
LA  - en
ID  - AA_2021_33_2_a4
ER  - 
%0 Journal Article
%A N. Kuznetsov
%T Metaharmonic functions: mean flux theorem, its converse and related properties
%J Algebra i analiz
%D 2021
%P 82-97
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_2_a4/
%G en
%F AA_2021_33_2_a4
N. Kuznetsov. Metaharmonic functions: mean flux theorem, its converse and related properties. Algebra i analiz, Tome 33 (2021) no. 2, pp. 82-97. http://geodesic.mathdoc.fr/item/AA_2021_33_2_a4/

[1] Axler S., Bourdon P., Ramey W., Harmonic function theory, Grad. Texts in Math., 137, 2nd ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[2] Beckenbach E. F., Reade M., “Mean values and harmonic polynomials”, Trans. Amer. Math. Soc., 53 (1943), 230–238 | DOI | MR | Zbl

[3] ben-Avraham D., Fokas A. S., “Solution of the modified Helmholtz equation in a triangular domain and an application to diffusion-limited coalescence”, Phys. Rev. E, 64 (2001), 016114 | DOI | MR

[4] Bôcher M., “On harmonic functions in two dimensions”, Proc. Amer. Acad. Arts and Sci., 41 (1906), 557–583

[5] Courant R., Hilbert D., Methods of mathematical physics, v. II, Partial differential equations, Intersci. Publ., New York, 1962 | MR | Zbl

[6] Estrada R., “Characterization of harmonic functions by the behavior of means at a single point”, SN Partial Differ. Equ. Appl., 1:2 (2020), 13 pp.

[7] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl

[8] Haltmeier M., “Universal inversion formulas for recovering a function from spherical means”, SIAM J. Math. Anal., 46:1 (2014), 214–232 | DOI | MR | Zbl

[9] Helmholtz H., “Theorie der Luftschwingungen in Röhren mit offenen Enden”, J. Reine Angew. Math., 57 (1860), 1–72 | MR | Zbl

[10] John F., Plane waves and spherical means applied to partial differential equations, Intersci. Publ., New York, 1955 | MR | Zbl

[11] Kellogg O. D., Foundations of potential theory, Springer, Berlin, 1929 | MR | Zbl

[12] Koebe P., “Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft”, Sitzungsber. Berlin. Math. Gessellschaft, 5 (1906), 39–42 | Zbl

[13] Komech A. I., Merzon A. E., Zhevandrov P. N., “On completeness of Ursells trapping modes”, Russian J. Math. Phys., 4 (1996), 457–486 | MR | Zbl

[14] Kuznetsov N., “Mean value properties of harmonic functions and related topics (a survey)”, J. Math. Sci., 242:2 (2019), 177–199 | DOI | MR | Zbl

[15] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves: a mathematical approach, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[16] Kuznetsov N., Porter R., Evans D. V., Simon M. J., “Uniqueness and trapped modes for surface-piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl

[17] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR

[18] Politis C. G., Papalexandris M. V., Athanassoulis G. A., “A boundary integral equation method for oblique water-wave scattering by cylinders governed by the modified Helmholtz equation”, Appl. Ocean Res., 24 (2002), 215–233 | DOI

[19] Poritsky H., “Generalizations of the Gauss law of the spherical mean”, Trans. Amer. Math. Soc., 43:2 (1938), 199–225 | DOI | MR

[20] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR

[21] Ursell F., “Edge waves on a sloping beach”, Proc. Roy. Soc. London Ser. A, 214 (1952), 79–97 | MR | Zbl

[22] Vekua I. N., “O metagarmonicheskikh funktsiyakh”, Tr. Tbiliss. Mat. In-ta, 12 (1943), 105–175

[23] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, OGIZ, M.–L., 1948 | MR

[24] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 2-e izd. ispr., dop., Nauka, M., 1971 | MR

[25] Watson G. N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944 | MR | Zbl

[26] Weber H., “Über einige bestimmte Integrale”, J. Reine Angew. Math., 69 (1868), 222–237 | MR

[27] Weber H., “Über die Integration der partiellen Differentialgleichung: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + k^2 u = 0$”, Math. Ann., 1 (1869), 1–36 | DOI | MR | Zbl