A note on the centralizer of a subalgebra of the Steinberg algebra
Algebra i analiz, Tome 33 (2021) no. 1, pp. 246-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an ample Hausdorff groupoid $\mathcal{G}$, and the Steinberg algebra $A_R(\mathcal{G})$ with coefficients in the commutative ring $R$ with unit, we describe the centralizer of the subalgebra $A_R(U)$ with $U$ an open closed invariant subset of the unit space of $\mathcal{G}$. In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify several results in the literature, and the corresponding results for Leavitt path algebras follow.
Keywords: ample groupoid, Steinberg algebra, centralizer, Leavitt path algebra, diagonal of the Leavitt path algebra, commutative core of the Leavitt path algebra.
@article{AA_2021_33_1_a9,
     author = {R. Hazrat and Huanhuan Li},
     title = {A note on the centralizer of a subalgebra of the {Steinberg} algebra},
     journal = {Algebra i analiz},
     pages = {246--253},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a9/}
}
TY  - JOUR
AU  - R. Hazrat
AU  - Huanhuan Li
TI  - A note on the centralizer of a subalgebra of the Steinberg algebra
JO  - Algebra i analiz
PY  - 2021
SP  - 246
EP  - 253
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a9/
LA  - en
ID  - AA_2021_33_1_a9
ER  - 
%0 Journal Article
%A R. Hazrat
%A Huanhuan Li
%T A note on the centralizer of a subalgebra of the Steinberg algebra
%J Algebra i analiz
%D 2021
%P 246-253
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a9/
%G en
%F AA_2021_33_1_a9
R. Hazrat; Huanhuan Li. A note on the centralizer of a subalgebra of the Steinberg algebra. Algebra i analiz, Tome 33 (2021) no. 1, pp. 246-253. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a9/

[1] Abrams G., Ara P., Siles Molina M., Leavitt path algebras, Lecture Notes in Math., 2191, Springer, London, 2017 | DOI | MR | Zbl

[2] Ara P., Bosa J., Hazrat R., Sims A., “Reconstruction of graded groupoids from graded Steinberg algebras”, Forum Math., 29:5 (2017), 1023–1037 | DOI | MR | Zbl

[3] Aranda Pino G., Clark J., an Huef A., Raeburn I., “Kumjian–Pask algebras of higher-rank graphs”, Trans. Amer. Math. Soc., 365:7 (2013), 3613–3641 | DOI | MR | Zbl

[4] Aranda Pino G., Crow K., “The center of a Leavitt path algebra”, Rev. Mat. Iberoam., 27:2 (2011), 621–644 | DOI | MR | Zbl

[5] Brown J., an Huef A., “Centers of algebras associated to higher-rank graphs”, Rev. Mat. Iberoam., 30:4 (2014), 1387–1396 | DOI | MR | Zbl

[6] Brown J., Nagy G., Reznikoff S., Sims A., Williams D., “Cartan subalgebras in $C^*$-algebras of Hausdorff étale groupoids”, Integral Equations Operator Theory, 85:1 (2016), 109–126 | DOI | MR | Zbl

[7] Carlsen T. M., Ruiz E., Sims A., Tomforde M., Reconstruction of groupoids and $C^*$-rigidity of dynamical systems, arXiv: 1711.01052

[8] Carlsen T. M., “$*$-isomorphism of Leavitt path algebras over $\mathbb Z$”, Adv. Math., 324 (2018), 326–335 | DOI | MR | Zbl

[9] Clark L. O., Gil Canto C., Nasr-Isfahani A., “The cycline subalgebra of a Kumjian–Pask algebra”, Proc. Amer. Math. Soc., 145:5 (2017), 1969–1980 | DOI | MR | Zbl

[10] Clark L. O., Hazrat R., Étale groupoid and Steinberg algebras, a concise introduction, Indian Stat. Inst. Leavitt Path Algebras and Classical K-Theory Ser., Springer, Singapore, 2020

[11] Clark L. O., Exel R., Pardo E., “A generalised uniqueness theorem and the graded ideal structure of Steinberg algebras”, Forum Math., 30:3 (2018), 533–552 | DOI | MR | Zbl

[12] Gil Canto C., Nasr-Isfahani A., “The commutative core of a Leavitt path algebra”, J. Algebra, 511 (2018), 227–248 | DOI | MR | Zbl

[13] Nagy G., Reznikoff S., “Abelian core of graph algebras”, J. Lond. Math. Soc. (2), 85:3 (2012), 889–908 | DOI | MR | Zbl

[14] Renault J., “Cuntz-like algebras”, Operator theoretical methods (Timioara, 1998), Theta Found., Bukharest, 2000, 371–386 | MR | Zbl

[15] Renault J., A groupoid approach to $C^{*}$-algebras, Lecture Notes in Math., 793, Springer, Berlin, 1980 | DOI | MR

[16] Steinberg B., “A groupoid approach to discrete inverse semigroup algebras”, Adv. Math., 223:2 (2010), 689–727 | DOI | MR | Zbl

[17] Steinberg B., “Diagonal-preserving isomorphisms of étale groupoid algebras”, J. Algebra, 518 (2019), 412–439 | DOI | MR | Zbl

[18] Webster S. B. G., “The path space of a directed graph”, Proc. Amer. Math. Soc., 142:1 (2014), 213–225 | DOI | MR | Zbl