Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_1_a9, author = {R. Hazrat and Huanhuan Li}, title = {A note on the centralizer of a subalgebra of the {Steinberg} algebra}, journal = {Algebra i analiz}, pages = {246--253}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a9/} }
R. Hazrat; Huanhuan Li. A note on the centralizer of a subalgebra of the Steinberg algebra. Algebra i analiz, Tome 33 (2021) no. 1, pp. 246-253. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a9/
[1] Abrams G., Ara P., Siles Molina M., Leavitt path algebras, Lecture Notes in Math., 2191, Springer, London, 2017 | DOI | MR | Zbl
[2] Ara P., Bosa J., Hazrat R., Sims A., “Reconstruction of graded groupoids from graded Steinberg algebras”, Forum Math., 29:5 (2017), 1023–1037 | DOI | MR | Zbl
[3] Aranda Pino G., Clark J., an Huef A., Raeburn I., “Kumjian–Pask algebras of higher-rank graphs”, Trans. Amer. Math. Soc., 365:7 (2013), 3613–3641 | DOI | MR | Zbl
[4] Aranda Pino G., Crow K., “The center of a Leavitt path algebra”, Rev. Mat. Iberoam., 27:2 (2011), 621–644 | DOI | MR | Zbl
[5] Brown J., an Huef A., “Centers of algebras associated to higher-rank graphs”, Rev. Mat. Iberoam., 30:4 (2014), 1387–1396 | DOI | MR | Zbl
[6] Brown J., Nagy G., Reznikoff S., Sims A., Williams D., “Cartan subalgebras in $C^*$-algebras of Hausdorff étale groupoids”, Integral Equations Operator Theory, 85:1 (2016), 109–126 | DOI | MR | Zbl
[7] Carlsen T. M., Ruiz E., Sims A., Tomforde M., Reconstruction of groupoids and $C^*$-rigidity of dynamical systems, arXiv: 1711.01052
[8] Carlsen T. M., “$*$-isomorphism of Leavitt path algebras over $\mathbb Z$”, Adv. Math., 324 (2018), 326–335 | DOI | MR | Zbl
[9] Clark L. O., Gil Canto C., Nasr-Isfahani A., “The cycline subalgebra of a Kumjian–Pask algebra”, Proc. Amer. Math. Soc., 145:5 (2017), 1969–1980 | DOI | MR | Zbl
[10] Clark L. O., Hazrat R., Étale groupoid and Steinberg algebras, a concise introduction, Indian Stat. Inst. Leavitt Path Algebras and Classical K-Theory Ser., Springer, Singapore, 2020
[11] Clark L. O., Exel R., Pardo E., “A generalised uniqueness theorem and the graded ideal structure of Steinberg algebras”, Forum Math., 30:3 (2018), 533–552 | DOI | MR | Zbl
[12] Gil Canto C., Nasr-Isfahani A., “The commutative core of a Leavitt path algebra”, J. Algebra, 511 (2018), 227–248 | DOI | MR | Zbl
[13] Nagy G., Reznikoff S., “Abelian core of graph algebras”, J. Lond. Math. Soc. (2), 85:3 (2012), 889–908 | DOI | MR | Zbl
[14] Renault J., “Cuntz-like algebras”, Operator theoretical methods (Timioara, 1998), Theta Found., Bukharest, 2000, 371–386 | MR | Zbl
[15] Renault J., A groupoid approach to $C^{*}$-algebras, Lecture Notes in Math., 793, Springer, Berlin, 1980 | DOI | MR
[16] Steinberg B., “A groupoid approach to discrete inverse semigroup algebras”, Adv. Math., 223:2 (2010), 689–727 | DOI | MR | Zbl
[17] Steinberg B., “Diagonal-preserving isomorphisms of étale groupoid algebras”, J. Algebra, 518 (2019), 412–439 | DOI | MR | Zbl
[18] Webster S. B. G., “The path space of a directed graph”, Proc. Amer. Math. Soc., 142:1 (2014), 213–225 | DOI | MR | Zbl