Quaternionic Grassmannians and Borel classes in algebraic geometry
Algebra i analiz, Tome 33 (2021) no. 1, pp. 136-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quaternionic Grassmannian $\mathrm{HGr}(r,n)$ is the affine open subscheme of the usual Grassmannian parametrizing those $2r$-dimensional subspaces of a $2n$-dimensional symplectic vector space on which the symplectic form is nondegenerate. In particular, we have $\mathrm{HP}^{n} = \mathrm{HGr}(1,n+1)$. For a symplectically oriented cohomology theory $A$, including oriented theories but also the Hermitian $\mathrm{K}$-theory, Witt groups, and algebraic symplectic cobordism, we have $A(\mathrm{HP}^{n}) = A(\operatorname{pt})[p]/(p^{n+1})$. Borel classes for symplectic bundles are introduced in the paper. They satisfy the splitting principle and the Cartan sum formula, and they are used to calculate the cohomology of quaternionic Grassmannians. In a symplectically oriented theory the Thom classes of rank $2$ symplectic bundles determine Thom and Borel classes for all symplectic bundles, and the symplectic Thom classes can be recovered from the Borel classes. The cell structure of the $\mathrm{HGr}(r,n)$ exists in cohomology, but it is difficult to see more than part of it geometrically. An exception is $\mathrm{HP}^{n}$ where the cell of codimension $2i$ is a quasi-affine quotient of $\mathbb{A}^{4n-2i+1}$ by a nonlinear action of $\mathbb{G}_{a}$.
Keywords: simplectically oriented cohomology theory, Hermitian $\mathrm{K}$-theory, Witt groups, algebraic symplectic cobordism, cell structure splitting principle.
@article{AA_2021_33_1_a6,
     author = {I. Panin and C. Walter},
     title = {Quaternionic {Grassmannians} and {Borel} classes in algebraic geometry},
     journal = {Algebra i analiz},
     pages = {136--193},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a6/}
}
TY  - JOUR
AU  - I. Panin
AU  - C. Walter
TI  - Quaternionic Grassmannians and Borel classes in algebraic geometry
JO  - Algebra i analiz
PY  - 2021
SP  - 136
EP  - 193
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a6/
LA  - en
ID  - AA_2021_33_1_a6
ER  - 
%0 Journal Article
%A I. Panin
%A C. Walter
%T Quaternionic Grassmannians and Borel classes in algebraic geometry
%J Algebra i analiz
%D 2021
%P 136-193
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a6/
%G en
%F AA_2021_33_1_a6
I. Panin; C. Walter. Quaternionic Grassmannians and Borel classes in algebraic geometry. Algebra i analiz, Tome 33 (2021) no. 1, pp. 136-193. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a6/

[1] Atiyah M. F., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | DOI | MR | Zbl

[2] Atiyah M. F., Rees E., “Vector bundles on projective $3$-space”, Invent. Math., 35 (1976), 131–153 | DOI | MR | Zbl

[3] Balmer P., “Derived Witt groups of a scheme”, J. Pure Appl. Algebra, 141:2 (1999), 101–129 | DOI | MR | Zbl

[4] Balmer P., Calmès B., “Witt groups of Grassmann varieties”, J. Algebraic Geometry, 21:4 (2012), 601–642 | DOI | MR | Zbl

[5] Calmès B., Hornbostel J., “Push-forwards for Witt groups of schemes”, Comment. Math. Helv., 86 (2011), 437–468 | DOI | MR | Zbl

[6] Conner P. E., Floyd E. E., The relation of cobordism to $\mathrm{K}$-theories, Lecture Notes in Math., 28, Springer-Verlag, Berlin, 1966 | DOI | MR

[7] Gille S., “The general dévissage theorem for Witt groups of schemes”, Arch. Math. (Basel), 88:4 (2007), 333–343 | DOI | MR | Zbl

[8] Knus M.-A., Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[9] Levine M., Morel F., Algebraic cobordism, Springer Monogr. Math., Springer, Berlin, 2007 | MR | Zbl

[10] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[11] Milnor J. W., Stasheff J. D., Characteristic classes, Ann. of Math. Stud., 76, Princeton Univ. Press, Princeton, N. J., 1974 | MR | Zbl

[12] Morel F., Rational stable splitting of Grassmanians and rational motivic sphere spectrum, First draft, 2006

[13] Nenashev A., “Gysin maps in Balmer–Witt theory”, J. Pure Appl. Algebra, 211:1 (2007), 203–221 | DOI | MR | Zbl

[14] Panin I., “Oriented cohomology theories of algebraic varieties”, $\mathrm{K}$-Theory, 30:3, Special issue in honor of Hyman Bass on his seventieth birthday (2003), 265–314 | DOI | MR | Zbl

[15] Panin I., “Oriented cohomology theories of algebraic varieties. II: Homology”, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl

[16] Panin I., Walter C., “On the motivic commutative ring spectrum BO”, Algebra i analiz, 30:6 (2018), 43–96 | MR

[17] Panin I. A., Valter Ch., “O svyazi simplekticheskikh algebraicheskikh kobordizmov i ermitovoi K-teorii”, Tr. Mat. in-ta RAN, 307, 2019, 180–192 | Zbl

[18] Panin I., Walter C., On the algebraic cobordism spectra MSL and MSp, 2018, arXiv: 1011.0651v2

[19] Smirnov A. L., “Orientatsii i transfery v kogomologiyakh algebraicheskikh mnogoobrazii”, Algebra i analiz, 18:2 (2006), 305–346

[20] Voevodsky V., “$\mathbf{A}\sp 1$-homotopy theory”, Doc. Math., 1998, Extra Vol. I, 579–604 | MR | Zbl