Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_1_a6, author = {I. Panin and C. Walter}, title = {Quaternionic {Grassmannians} and {Borel} classes in algebraic geometry}, journal = {Algebra i analiz}, pages = {136--193}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a6/} }
I. Panin; C. Walter. Quaternionic Grassmannians and Borel classes in algebraic geometry. Algebra i analiz, Tome 33 (2021) no. 1, pp. 136-193. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a6/
[1] Atiyah M. F., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | DOI | MR | Zbl
[2] Atiyah M. F., Rees E., “Vector bundles on projective $3$-space”, Invent. Math., 35 (1976), 131–153 | DOI | MR | Zbl
[3] Balmer P., “Derived Witt groups of a scheme”, J. Pure Appl. Algebra, 141:2 (1999), 101–129 | DOI | MR | Zbl
[4] Balmer P., Calmès B., “Witt groups of Grassmann varieties”, J. Algebraic Geometry, 21:4 (2012), 601–642 | DOI | MR | Zbl
[5] Calmès B., Hornbostel J., “Push-forwards for Witt groups of schemes”, Comment. Math. Helv., 86 (2011), 437–468 | DOI | MR | Zbl
[6] Conner P. E., Floyd E. E., The relation of cobordism to $\mathrm{K}$-theories, Lecture Notes in Math., 28, Springer-Verlag, Berlin, 1966 | DOI | MR
[7] Gille S., “The general dévissage theorem for Witt groups of schemes”, Arch. Math. (Basel), 88:4 (2007), 333–343 | DOI | MR | Zbl
[8] Knus M.-A., Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[9] Levine M., Morel F., Algebraic cobordism, Springer Monogr. Math., Springer, Berlin, 2007 | MR | Zbl
[10] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford Univ. Press, Oxford, 1995 | MR | Zbl
[11] Milnor J. W., Stasheff J. D., Characteristic classes, Ann. of Math. Stud., 76, Princeton Univ. Press, Princeton, N. J., 1974 | MR | Zbl
[12] Morel F., Rational stable splitting of Grassmanians and rational motivic sphere spectrum, First draft, 2006
[13] Nenashev A., “Gysin maps in Balmer–Witt theory”, J. Pure Appl. Algebra, 211:1 (2007), 203–221 | DOI | MR | Zbl
[14] Panin I., “Oriented cohomology theories of algebraic varieties”, $\mathrm{K}$-Theory, 30:3, Special issue in honor of Hyman Bass on his seventieth birthday (2003), 265–314 | DOI | MR | Zbl
[15] Panin I., “Oriented cohomology theories of algebraic varieties. II: Homology”, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl
[16] Panin I., Walter C., “On the motivic commutative ring spectrum BO”, Algebra i analiz, 30:6 (2018), 43–96 | MR
[17] Panin I. A., Valter Ch., “O svyazi simplekticheskikh algebraicheskikh kobordizmov i ermitovoi K-teorii”, Tr. Mat. in-ta RAN, 307, 2019, 180–192 | Zbl
[18] Panin I., Walter C., On the algebraic cobordism spectra MSL and MSp, 2018, arXiv: 1011.0651v2
[19] Smirnov A. L., “Orientatsii i transfery v kogomologiyakh algebraicheskikh mnogoobrazii”, Algebra i analiz, 18:2 (2006), 305–346
[20] Voevodsky V., “$\mathbf{A}\sp 1$-homotopy theory”, Doc. Math., 1998, Extra Vol. I, 579–604 | MR | Zbl