Twisted quadratic foldings of root systems
Algebra i analiz, Tome 33 (2021) no. 1, pp. 93-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to twisted foldings of root systems that generalize the involutive foldings corresponding to automorphisms of Dynkin diagrams. A motivating example is Lusztig's projection of the root system of type $E_8$ onto the subring of icosians of the quaternion algebra, which gives the root system of type $H_4$. By using moment graph techniques for any such folding, a map at the equivariant cohomology level is constructed. It is shown that this map commutes with characteristic classes and Borel maps. Restrictions of this map to the usual cohomology of projective homogeneous varieties, to group cohomology and to their virtual analogues for finite reflection groups are also introduced and studied.
Keywords: folding, equivariant cohomology, structure algebra, moment graph, finite reflection group.
@article{AA_2021_33_1_a4,
     author = {M. Lanini and K. Zainoulline},
     title = {Twisted quadratic foldings of root systems},
     journal = {Algebra i analiz},
     pages = {93--118},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a4/}
}
TY  - JOUR
AU  - M. Lanini
AU  - K. Zainoulline
TI  - Twisted quadratic foldings of root systems
JO  - Algebra i analiz
PY  - 2021
SP  - 93
EP  - 118
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a4/
LA  - en
ID  - AA_2021_33_1_a4
ER  - 
%0 Journal Article
%A M. Lanini
%A K. Zainoulline
%T Twisted quadratic foldings of root systems
%J Algebra i analiz
%D 2021
%P 93-118
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a4/
%G en
%F AA_2021_33_1_a4
M. Lanini; K. Zainoulline. Twisted quadratic foldings of root systems. Algebra i analiz, Tome 33 (2021) no. 1, pp. 93-118. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a4/

[1] Arnold V., “Remarks on quasicrystallic symmetries. Progress in chaotic dynamics”, Phys. D, 33:1–3 (1988), 21–25 | DOI | MR | Zbl

[2] Braden T., MacPherson R., “From moment graphs to intersection cohomology”, Math. Ann., 321:3 (2001), 533–551 | DOI | MR | Zbl

[3] Brion M., “Equivariant cohomology and equivariant intersection theory”, Representation theory and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Kluwer, Dordrecht, 1998, 1–37 | MR | Zbl

[4] Varchenko A. N., Chmutov S. V., “Konechnye neprivodimye gruppy, porozhdennye otrazheniyami, sut gruppy monodromii podkhodyaschikh osobennostei”, Funkts. anal. i ego pril., 18:3 (1984), 1–13 | Zbl

[5] Calmes B., Zainoulline K., Zhong C., “Equivariant oriented cohomology of flag varieties”, Doc. Math., 2015, Extra vol.: Alexander S. Merkurjev's sixtieth birthday, 113–144 | MR | Zbl

[6] Demazure M., “Invariants symétriques entiers des groupes de Weyl et torsion”, Invent. Math., 21 (1973), 287–301 | DOI | MR | Zbl

[7] Demazure M., Grothendieck A., Schémas en groupes. III. Structure des schémas en groupes réductifs, Lecture Notes in Math., 153, Springer-Verlag, Berlin–New York, 1970 | MR

[8] Devyatov R., Lanini M., Zainoulline K., “Oriented cohomology sheaves on double moment graphs”, Doc. Math., 24 (2019), 563–608 | MR | Zbl

[9] Duan H., Zhao X., “Schubert presentation of the cohomology ring of flag manifolds $G/T$”, LMS J. Comput. Math., 18:1 (2015), 489–506 | DOI | MR | Zbl

[10] Dyer M., “Embeddings of root systems. I. Root systems over commutative rings”, J. Algebra, 321:11 (2009), 3226–3248 | DOI | MR | Zbl

[11] Elias B., “Folding with Soergel bimodules”, Categorification and higher representation theory, Contemp. Math., 683, Amer. Math. Soc., Providence, RI, 2017, 287–332 | DOI | MR | Zbl

[12] Fiebig P., “The combinatorics of Coxeter categories”, Trans. Amer. Math. Soc., 360:8 (2008), 4211–4233 | DOI | MR | Zbl

[13] Grothendieck A., Torsion homologique et sections rationnelles, Séminaire C. Chevalley, 5, Anneaux de Chow appl., Paris, 1958 | MR

[14] Hiller H., The geometry of Coxeter groups, Res. Notes in Math., 54, Pitman, Boston, 1982 | MR

[15] Kac V., “Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups”, Invent. Math., 80:1 (1985), 69–79 | DOI | MR | Zbl

[16] Kac V., Peterson D., “Generalized invariants of groups generated by reflections”, Geometry today (Rome, 1984), Progr. Math., 60, Birkhäuser Verlag, Boston, MA, 1985, 231–249 | MR

[17] Kaji S., “Equivariant Schubert calculus of Coxeter groups”, Tr. Mat. in-ta RAN, 275, 2011, 250–261 | MR | Zbl

[18] Knus M.-A., Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[19] Kostant B., Kumar S., “The nil Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Adv. in Math., 62:3 (1986), 187–237 | DOI | MR | Zbl

[20] Lanini M., “Kazhdan–Lusztig combinatorics in the moment graph setting”, J. Algebra, 370 (2012), 152–170 | DOI | MR | Zbl

[21] Lusztig G., Hecke algebras with unequal parameters, CRM Monogr. Ser., 18, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[22] Lusztig G., “Some examples of square integrable representations of semisimple $p$-adic groups”, Trans. Amer. Math. Soc., 277:2 (1983), 623–653 | MR | Zbl

[23] Moody R., Patera J., “Quasicrystals and icosians”, J. Phys. A, 26:12 (1993), 2829–2853 | DOI | MR | Zbl

[24] Neumann F., Neusel M., Smith L., “Rings of generalized and stable invariants and classifying spaces of compact Lie groups”, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), Contemp. Math., 227, Amer. Math. Soc., Providence, RI, 1999, 267–285 | DOI | MR | Zbl

[25] Scherbak O., “Volnovye fronty i gruppy otrazhenii”, Uspekhi mat. nauk, 43:3 (1988), 125–160 | MR

[26] Scherbak O., “Osobennosti semeistva evolvent v okrestnosti tochki peregiba krivoi i gruppa $H3$, porozhdennaya otrazheniyami”, Funkts. anal. i ego pril., 17:4 (1983), 70–72 | MR

[27] Soergel W., “Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduls über Polynomringen”, J. Inst. Math. Jussieu, 6:3 (2007), 501–525 | DOI | MR | Zbl

[28] Steinberg R., Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968 | MR | Zbl

[29] Stembridge J., “Tight quotients and double quotients in the Bruhat order”, Electron. J. Combin., 11:2 (2004/06), 1–41 | MR