Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_1_a4, author = {M. Lanini and K. Zainoulline}, title = {Twisted quadratic foldings of root systems}, journal = {Algebra i analiz}, pages = {93--118}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a4/} }
M. Lanini; K. Zainoulline. Twisted quadratic foldings of root systems. Algebra i analiz, Tome 33 (2021) no. 1, pp. 93-118. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a4/
[1] Arnold V., “Remarks on quasicrystallic symmetries. Progress in chaotic dynamics”, Phys. D, 33:1–3 (1988), 21–25 | DOI | MR | Zbl
[2] Braden T., MacPherson R., “From moment graphs to intersection cohomology”, Math. Ann., 321:3 (2001), 533–551 | DOI | MR | Zbl
[3] Brion M., “Equivariant cohomology and equivariant intersection theory”, Representation theory and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Kluwer, Dordrecht, 1998, 1–37 | MR | Zbl
[4] Varchenko A. N., Chmutov S. V., “Konechnye neprivodimye gruppy, porozhdennye otrazheniyami, sut gruppy monodromii podkhodyaschikh osobennostei”, Funkts. anal. i ego pril., 18:3 (1984), 1–13 | Zbl
[5] Calmes B., Zainoulline K., Zhong C., “Equivariant oriented cohomology of flag varieties”, Doc. Math., 2015, Extra vol.: Alexander S. Merkurjev's sixtieth birthday, 113–144 | MR | Zbl
[6] Demazure M., “Invariants symétriques entiers des groupes de Weyl et torsion”, Invent. Math., 21 (1973), 287–301 | DOI | MR | Zbl
[7] Demazure M., Grothendieck A., Schémas en groupes. III. Structure des schémas en groupes réductifs, Lecture Notes in Math., 153, Springer-Verlag, Berlin–New York, 1970 | MR
[8] Devyatov R., Lanini M., Zainoulline K., “Oriented cohomology sheaves on double moment graphs”, Doc. Math., 24 (2019), 563–608 | MR | Zbl
[9] Duan H., Zhao X., “Schubert presentation of the cohomology ring of flag manifolds $G/T$”, LMS J. Comput. Math., 18:1 (2015), 489–506 | DOI | MR | Zbl
[10] Dyer M., “Embeddings of root systems. I. Root systems over commutative rings”, J. Algebra, 321:11 (2009), 3226–3248 | DOI | MR | Zbl
[11] Elias B., “Folding with Soergel bimodules”, Categorification and higher representation theory, Contemp. Math., 683, Amer. Math. Soc., Providence, RI, 2017, 287–332 | DOI | MR | Zbl
[12] Fiebig P., “The combinatorics of Coxeter categories”, Trans. Amer. Math. Soc., 360:8 (2008), 4211–4233 | DOI | MR | Zbl
[13] Grothendieck A., Torsion homologique et sections rationnelles, Séminaire C. Chevalley, 5, Anneaux de Chow appl., Paris, 1958 | MR
[14] Hiller H., The geometry of Coxeter groups, Res. Notes in Math., 54, Pitman, Boston, 1982 | MR
[15] Kac V., “Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups”, Invent. Math., 80:1 (1985), 69–79 | DOI | MR | Zbl
[16] Kac V., Peterson D., “Generalized invariants of groups generated by reflections”, Geometry today (Rome, 1984), Progr. Math., 60, Birkhäuser Verlag, Boston, MA, 1985, 231–249 | MR
[17] Kaji S., “Equivariant Schubert calculus of Coxeter groups”, Tr. Mat. in-ta RAN, 275, 2011, 250–261 | MR | Zbl
[18] Knus M.-A., Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[19] Kostant B., Kumar S., “The nil Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Adv. in Math., 62:3 (1986), 187–237 | DOI | MR | Zbl
[20] Lanini M., “Kazhdan–Lusztig combinatorics in the moment graph setting”, J. Algebra, 370 (2012), 152–170 | DOI | MR | Zbl
[21] Lusztig G., Hecke algebras with unequal parameters, CRM Monogr. Ser., 18, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[22] Lusztig G., “Some examples of square integrable representations of semisimple $p$-adic groups”, Trans. Amer. Math. Soc., 277:2 (1983), 623–653 | MR | Zbl
[23] Moody R., Patera J., “Quasicrystals and icosians”, J. Phys. A, 26:12 (1993), 2829–2853 | DOI | MR | Zbl
[24] Neumann F., Neusel M., Smith L., “Rings of generalized and stable invariants and classifying spaces of compact Lie groups”, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), Contemp. Math., 227, Amer. Math. Soc., Providence, RI, 1999, 267–285 | DOI | MR | Zbl
[25] Scherbak O., “Volnovye fronty i gruppy otrazhenii”, Uspekhi mat. nauk, 43:3 (1988), 125–160 | MR
[26] Scherbak O., “Osobennosti semeistva evolvent v okrestnosti tochki peregiba krivoi i gruppa $H3$, porozhdennaya otrazheniyami”, Funkts. anal. i ego pril., 17:4 (1983), 70–72 | MR
[27] Soergel W., “Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduls über Polynomringen”, J. Inst. Math. Jussieu, 6:3 (2007), 501–525 | DOI | MR | Zbl
[28] Steinberg R., Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968 | MR | Zbl
[29] Stembridge J., “Tight quotients and double quotients in the Bruhat order”, Electron. J. Combin., 11:2 (2004/06), 1–41 | MR