Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2021_33_1_a1, author = {Yu. Belousov and M. V. Karev and A. V. Malyutin and A. Yu. Miller and E. A. Fominykh}, title = {Lernaean knots and band surgery}, journal = {Algebra i analiz}, pages = {30--66}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a1/} }
TY - JOUR AU - Yu. Belousov AU - M. V. Karev AU - A. V. Malyutin AU - A. Yu. Miller AU - E. A. Fominykh TI - Lernaean knots and band surgery JO - Algebra i analiz PY - 2021 SP - 30 EP - 66 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a1/ LA - ru ID - AA_2021_33_1_a1 ER -
Yu. Belousov; M. V. Karev; A. V. Malyutin; A. Yu. Miller; E. A. Fominykh. Lernaean knots and band surgery. Algebra i analiz, Tome 33 (2021) no. 1, pp. 30-66. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a1/
[1] Abe T., Hanaki R., Higa R., “The unknotting number and band-unknotting number of a knot”, Osaka J. Math., 49:2 (2012), 523–550 | MR | Zbl
[2] Abe T., Kanenobu T., “Unoriented band surgery on knots and links”, Kobe J. Math., 31:1–2 (2014), 21–44 | MR | Zbl
[3] Adams C. C., The knot book. An elementary introduction to the mathematical theory of knots, W. H. Freeman Co., New York, 1994 | MR | Zbl
[4] Alexander J. W., “A lemma on systems of knotted curves”, Proc. Nat. Acad. Sci. USA, 9:3 (1923), 93–95 | DOI | MR | Zbl
[5] Bae Y., “Polynomial invariants of a link with local symmetry”, Topology Appl., 201 (2016), 350–357 | DOI | MR | Zbl
[6] Bao Y., “$H(2)$-unknotting operation related to $2$-bridge links”, Topology Appl., 159:8 (2012), 2158–2167 | DOI | MR | Zbl
[7] Bao Y., “A note on knots with $H(2)$-unknotting number one”, Osaka J. Math., 51:3 (2014), 585–596 | MR | Zbl
[8] Belousov Yu. S., “Polumeandricheskoe chislo perekrestkov uzla i rodstvennye invarianty”, Zap. nauch. semin. POMI, 476, 2018, 20–33
[9] Belousov Yu. S., Malyutin A. V., Hyperbolic knots are not generic, 2019, arXiv: 1908.06187
[10] Belousov Yu. S., Malyutin A. V., “Meander diagrams of knots and spatial graphs. Proofs of generalized Jablan–Radović conjectures”, Topology Appl., 274 (2020), 107122 | DOI | MR | Zbl
[11] Birman J. S., Menasco W., “Studying links via closed braids. IV. Composite links and split links”, Invent. Math., 102:1 (1990), 115–139 | DOI | MR | Zbl
[12] Brandt R. D., Lickorish W. B. R., Millett K. C., “A polynomial invariant for unoriented knots and links”, Invent. Math., 84:3 (1986), 563–573 | DOI | MR | Zbl
[13] Buck D., Ishihara K., “Coherent band pathways between knots and links”, J. Knot Theory Ramifications, 24:2 (2015), 1550006, 21 pp. | DOI | MR | Zbl
[14] Buck D., Ishihara K., Rathbun M., Shimokawa K., “Band surgeries and crossing changes between fibered links”, J. Lond. Math. Soc. (2), 94:2 (2016), 557–582 | DOI | MR | Zbl
[15] Burde G., Zieschang H., Knots, De Gruyter Stud. Math., 5, 2nd ed., Walter de Gruyter Co., Berlin, 2003 | MR | Zbl
[16] Clark B. E., “Crosscaps and knots”, Internat. J. Math. Math. Sci., 1:1 (1978), 113–123 | DOI | MR
[17] Cromwell P. R., “Embedding knots and links in an open book. I. Basic properties”, Topology Appl., 64:1 (1995), 37–58 | DOI | MR | Zbl
[18] Dehornoy P., Braids and self-distributivity, Progr. Math., 192, Birkhäuser, Basel, 2000 | MR | Zbl
[19] Denne E. J., Alternating quadrisecants of knots, Ph.D. Thesis, Univ. Illinois Urbana-Champaign, Champaign, IL, 2004 | MR
[20] Denne E., Diao Y., Sullivan J. M., “Quadrisecants give new lower bounds for the ropelength of a knot”, Geom. Topol., 10 (2006), 1–26 | DOI | MR | Zbl
[21] Denne E., “Quadrisecants and essential secants of knots”, New directions in geometric and applied knot theory, Partial Differ. Equ. Meas. Theory, De Gruyter, Berlin, 2018, 138–158 | MR | Zbl
[22] De Toffoli S., Degrees of Essentiality for Secants of Knots, Ph.D. Thesis, Techn. Univ. Berlin, Berlin, Germany, 2013
[23] Diao Y., “The additivity of crossing numbers”, J. Knot Theory Ramifications, 13:7 (2004), 857–866 | DOI | MR | Zbl
[24] Dynnikov I. A., Prasolov M. V., “Shunty dlya pryamougolnykh diagramm. Dokazatelstvo gipotezy Dzhonsa i svyazannye voprosy”, Tr. Mosk. mat. o-va, 74, no. 1, 2013, 115–173 | Zbl
[25] Eudave Muñoz M., “Primeness and sums of tangles”, Trans. Amer. Math. Soc., 306:2 (1988), 773–790 | DOI | MR | Zbl
[26] Futer D., Kalfagianni E., Purcell J., Guts of surfaces and the colored Jones polynomial, Lecture Notes in Math., 2069, Springer, Heidelberg, 2013 | DOI | MR | Zbl
[27] Futer D., Kalfagianni E., Purcell J., “Hyperbolic semi-adequate links”, Comm. Anal. Geom., 23:5 (2015), 993–1030 | DOI | MR | Zbl
[28] Gordon C. McA., Luecke J., “Reducible manifolds and Dehn surgery”, Topology, 35:2 (1996), 385–409 | DOI | MR | Zbl
[29] Gruber H., Estimates for the minimal crossing number, 2003, arXiv: math/0303273v3
[30] Hashizume Y., “On the uniqueness of the decomposition of a link”, Osaka Math. J., 10 (1958), 283–300 | MR
[31] Hashizume Y., “Errata: On the uniqueness of the decomposition of a link”, Osaka Math. J., 11 (1959), 249 | MR | Zbl
[32] Hoste J., Nakanishi Y., Taniyama K., “Unknotting operations involving trivial tangles”, Osaka J. Math., 27:3 (1990), 555–566 | MR | Zbl
[33] Ichihara K., Jong I. D., “Cosmetic banding on knots and links. With an appendix by Hidetoshi Masai”, Osaka J. Math., 55:4 (2018), 731–745 | MR | Zbl
[34] Ishihara K., Shimokawa K., Vazquez M., “Site-specific recombination modeled as a band surgery”, Discrete and Topological Models in Molecular Biology, Nat. Comput. Ser., Springer, Heidelberg, 2014, 387–401 | DOI | MR | Zbl
[35] Jabuka S., Liu B., Moore A. H., Knot graphs and Gromov hyperbolicity, 2019, arXiv: 1912.03766
[36] Kalfagianni E., “A Jones slopes characterization of adequate knots”, Indiana Univ. Math. J., 67:1 (2018), 205–219 | DOI | MR | Zbl
[37] Kalfagianni E., Lee C. R. S., “On the degree of the colored Jones polynomial”, Acta Math. Vietnam., 39:4 (2014), 549–560 | DOI | MR | Zbl
[38] Kalfagianni E., Lee C. R. S., “Crosscap numbers and the Jones polynomial”, Adv. Math., 286 (2016), 308–337 | DOI | MR | Zbl
[39] Kanenobu S., Kanenobu T., “Oriented Gordian distance of two-component links with up to seven crossings”, J. Knot Theory Ramifications, 24:10 (2015), 1540013, 14 pp. | DOI | MR | Zbl
[40] Kanenobu T., “Band surgery on knots and links”, J. Knot Theory Ramifications, 19:12 (2010), 1535–1547 | DOI | MR | Zbl
[41] Kanenobu T., “$H(2)$-Gordian distance of knots”, J. Knot Theory Ramifications, 20:6 (2011), 813–835 | DOI | MR | Zbl
[42] Kanenobu T., “Band surgery on knots and links. II”, J. Knot Theory Ramifications, 21:9 (2012), 1250086, 22 pp. | DOI | MR | Zbl
[43] Kanenobu T., “Band surgery on knots and links. III”, J. Knot Theory Ramifications, 25:10 (2016), 1650056, 12 pp. | DOI | MR | Zbl
[44] Kanenobu T., Miyazawa Y., “$H(2)$-unknotting number of a knot”, Commun. Math. Res., 25:5 (2009), 433–460 | MR | Zbl
[45] Kanenobu T., Moriuchi H., “Links which are related by a band surgery or crossing change”, Bol. Soc. Mat. Mex. (3), 20:2 (2014), 467–483 | DOI | MR | Zbl
[46] Kanenobu T., Moriuchi H., “Coherent band-Gordian distances between knots and links with up to seven crossings”, Topology Appl., 264 (2019), 233–250 | DOI | MR | Zbl
[47] Kauffman L. H., “An invariant of regular isotopy”, Trans. Amer. Math. Soc., 318:2 (1990), 417–471 | DOI | MR | Zbl
[48] Kim W. S., Lee J. H., Lee S., “$2$-Tangle replacements and adequate diagrams”, J. Knot Theory Ramifications, 26:13 (2017), 1750083, 8 pp. | DOI | MR | Zbl
[49] Kawauchi A., A survey of knot theory, Birkhäuser, Basel, 1996 | MR | Zbl
[50] Kinoshita S., “On $\theta_n$-curves in $\mathbb{R}^3$ and their constituent knots”, Topology and computer science (Atami, 1986), Kinokuniya, Tokyo, 1987, 211–216 | MR
[51] Kuperberg G., “Quadrisecants of knots and links”, J. Knot Theory Ramifications, 3:1 (1994), 41–50 | DOI | MR | Zbl
[52] Lackenby M., “The crossing number of composite knots”, J. Topol., 2:4 (2009), 747–68 | DOI | MR
[53] Lee C. R. S., “A trivial tail homology for non-A-adequate links”, Algebr. Geom. Topol., 18:3 (2018), 1481–1513 | DOI | MR | Zbl
[54] Lee C. R. S., “Stability properties of the colored Jones polynomial”, J. Knot Theory Ramifications, 28:8 (2019), 1950050, 20 pp. | DOI | MR | Zbl
[55] Leng X., Yang Z., Liu X., “A result on the Slope conjectures for $3$-string Montesinos knots”, J. Knot Theory Ramifications, 27:13 (2018), 1842008, 24 pp. | DOI | MR | Zbl
[56] Lickorish W. B. R., “Unknotting by adding a twisted band”, Bull. London Math. Soc., 18:6 (1986), 613–615 | DOI | MR | Zbl
[57] Lickorish W. B. R., An introduction to knot theory, Grad. Texts in Math., 175, Springer-Verlag, New York, 1997 | DOI | MR | Zbl
[58] Lickorish W. B. R., Thistlethwaite M. B., “Some links with nontrivial polynomials and their crossing-numbers”, Comment. Math. Helv., 63:4 (1988), 527–539 | DOI | MR | Zbl
[59] Lidman T., Moore A. H., Vazquez M., “Distance one lens space fillings and band surgery on the trefoil knot”, Algebr. Geom. Topol., 19:5 (2019), 2439–2484 | DOI | MR | Zbl
[60] Malyutin A. V., “Psevdokharaktery grupp kos i prostota zatseplenii”, Algebra i analiz, 21:2 (2009), 113–135 | MR
[61] Malyutin A. V., “On the question of genericity of hyperbolic knots”, Internat. Math. Res. Notices, 2020:21 (2020), 7792–7828 | DOI | MR
[62] McDonald C., “Band number and the double slice genus”, New York J. Math., 25 (2019), 964–974 | MR | Zbl
[63] Moore A. H., Vazquez M., “A note on band surgery and the signature of a knot”, Bull. London Math. Soc., 52:6 (2020), 1191–1208 | DOI
[64] Moore A. H., Vazquez M. H., “Recent advances on the non-coherent band surgery model for site-specific recombination”, Topology and geometry of biopolymers, Contemp. Math., 746, Amer. Math. Soc., Providence, RI, 2020, 101–125 | DOI | MR | Zbl
[65] Ozawa M., “Essential state surfaces for knots and links”, J. Aust. Math. Soc., 91:3 (2011), 391–404 | DOI | MR | Zbl
[66] Rolfsen D., Knots and links, Math. Lecture Ser., 7, Publish or Perish, Inc., Berkeley, Calif., 1976 | MR | Zbl
[67] Scharlemann M. G., “Unknotting number one knots are prime”, Invent. Math., 82:1 (1985), 37–55 | DOI | MR | Zbl
[68] Scharlemann M., Thompson A., “Unknotting number, genus, and companion tori”, Math. Ann., 280:2 (1988), 191–205 | DOI | MR | Zbl
[69] Schubert H., “Die eindeutige Zerlegbarkeit eines Knoten in Primknoten”, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 1949, no. 3, 57–104 | MR
[70] Schubert H., “Über eine numerische Knoteninvariante”, Math. Z., 61 (1954), 245–288 | DOI | MR | Zbl
[71] Schultens J., “Additivity of bridge numbers of knots”, Math. Proc. Cambridge Philos. Soc., 135:3 (2003), 539–544 | DOI | MR | Zbl
[72] Stoimenow A., “On the satellite crossing number conjecture”, J. Topol. Anal., 3:2 (2011), 109–143 | DOI | MR | Zbl
[73] Stoimenow A., “Coefficients and non-triviality of the Jones polynomial”, J. Reine Angew. Math., 657 (2011), 1–55 | DOI | MR | Zbl
[74] Stoimenow A., “On the crossing number of semiadequate links”, Forum Math., 26:4 (2014), 1187–1246 | DOI | MR | Zbl
[75] Thistlethwaite M. B., “Kauffman's polynomial and alternating links”, Topology, 27:3 (1988), 311–318 | DOI | MR | Zbl
[76] Thistlethwaite M. B., “On the Kauffman polynomial of an adequate link”, Invent. Math., 93:2 (1988), 285–296 | DOI | MR | Zbl
[77] Torisu I., “The determination of the pairs of two-bridge knots or links with Gordian distance one”, Proc. Amer. Math. Soc., 126:5 (1998), 1565–1571 | DOI | MR | Zbl
[78] Zhang X., “Unknotting number one knots are prime: a new proof”, Proc. Amer. Math. Soc., 113:2 (1991), 611–612 | DOI | MR | Zbl
[79] Zhang K., Yang Z., “A note on the Gordian complexes of some local moves on knots”, J. Knot Theory Ramifications, 27:9 (2018), 1842002, 6 pp. | DOI | MR | Zbl
[80] Zhang K., Yang Z., Lei F., “The $H(n)$-Gordian complex of knots”, J. Knot Theory Ramifications, 26:13 (2017), 1750088, 7 pp. | DOI | MR | Zbl