The Clebsh--Gordan coefficients for the algebra $\mathfrak{gl}_3$ and hypergeometric functions
Algebra i analiz, Tome 33 (2021) no. 1, pp. 1-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2021_33_1_a0,
     author = {D. V. Artamonov},
     title = {The {Clebsh--Gordan} coefficients for the algebra $\mathfrak{gl}_3$ and hypergeometric functions},
     journal = {Algebra i analiz},
     pages = {1--29},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2021_33_1_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - The Clebsh--Gordan coefficients for the algebra $\mathfrak{gl}_3$ and hypergeometric functions
JO  - Algebra i analiz
PY  - 2021
SP  - 1
EP  - 29
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2021_33_1_a0/
LA  - ru
ID  - AA_2021_33_1_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T The Clebsh--Gordan coefficients for the algebra $\mathfrak{gl}_3$ and hypergeometric functions
%J Algebra i analiz
%D 2021
%P 1-29
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2021_33_1_a0/
%G ru
%F AA_2021_33_1_a0
D. V. Artamonov. The Clebsh--Gordan coefficients for the algebra $\mathfrak{gl}_3$ and hypergeometric functions. Algebra i analiz, Tome 33 (2021) no. 1, pp. 1-29. http://geodesic.mathdoc.fr/item/AA_2021_33_1_a0/

[1] van der Waerden B. L., Die gruppentheoretische Methode in der Quantenmechanik, Julius Springer, Berlin, 1932 | MR | Zbl

[2] Racah G., “Theory of complex spectra. II”, Phys. Rev., 62 (1942), 438–462 | DOI

[3] Greiner W., Muller B., Quantum mechanics. Symmetries, 2nd ed., Springer Verlag, Berlin, 1994 | MR | Zbl

[4] Biedenharn L. C., Baid G. E., “On the representations of semisimple Lie Groups. II”, J. Math. Phys., 4 (1963), 1449–1466 | DOI | MR

[5] Louck J. D., Biedenharn L. C., “A pattern calculus for tensor operators in the unitary groups”, Comm. Math. Phys., 8 (1968), 89–131 | DOI | MR | Zbl

[6] Louck J. D., Biedenharn L. C., “Canonical adjoit tensor operators in $U(n)$”, J. Math. Phys., 11 (1970), 2368–2411 | DOI | MR

[7] Chacon E., Ciftan M., Biedenharn L. C., “On the evaluation of th multiplicity-free Wigner coefficients of $U(n)$”, J. Math. Phys., 13 (1972), 577–589 | DOI | MR

[8] Louck J. D., Biedenharn L. C., “On the structure of the canonical tensor operators in the unitary groups. II. An extension of the pattern calculus rules and the canonical splitting in $U(3)$”, J. Math. Phys., 13 (1972), 1957–1984 | DOI | MR | Zbl

[9] Moshinsky M., “Wigner coefficents for the $SU(3)$ group and some applications”, Rev. Modern Phys., 34 (1962), 813–828 | DOI | MR | Zbl

[10] Chew C. K., von Baeyer H. C., “Explicit computation of the $SU(3)$ Clebsch–Gordan coefficients”, Nuovo Cimento A, 56 (1968), 53 | DOI

[11] Hecht K. T., Suzuki Y., “Some special $SU(3)\supset R(3)$ Wigner coefficients and their application”, J. Math. Phys., 24:4 (1983), 785–792 | DOI | MR | Zbl

[12] Klink W. H., “$SU(3)$ Clebsch–Gordan coefficients with definite permutation symmetry”, Ann. Phys., 213:1 (1992), 54–73 | DOI | MR | Zbl

[13] Biedenharn L. C., Baid G. E., “On the representations of the semisimple Lie groups. V. Some explicit Wigner operators for $SU(3)$”, J. Math. Phys., 6, 1847–1854 | MR | Zbl

[14] Alisauskas S., “Explicit canonical tensor operators and orthonormal coupling coefficients of $SU(3)$”, J. Math. Phys., 33:6 (1992), 1983–2004 | DOI | MR | Zbl

[15] Louck J. D., Biedenharn L. C., “Special functions associated with $SU(3)$ Wigner–Clebsch–Gordan coefficients”, School on Symmetry and Structural properties on Condenced matter (Poznan, Poland, 6–12 September 1990) https://www.osti.gov/servlets/purl/6781579

[16] Prakash J. S., Sharatchandra H. S., “A calculus for $SU(3)$ leading to an algebraic formula for the Clebsch–Gordan coefficients”, J. Math. Phys., 37:12 (1996), 6530–6569 | DOI | MR | Zbl

[17] Grigorescu M., $SU (3)$ Clebsch–Gordan coefficients, arXiv: math-ph/0007033 | MR

[18] Williams H. T., Wynne C. J., “A new algorithm for computation of $SU(3)$ Clebsch–Gordan coefficients”, Comput. Phys., 8 (1994), 355–359 | DOI

[19] Rowe D. J., Repka J., “An algebraic algorithm for calculating Clebsch–Gordan coefficients; application to $SU(2)$ and $SU(3)$”, J. Math. Phys., 38:8 (1997), 4363–4388 | DOI | MR | Zbl

[20] Alex A., Kalus M., Huckleberry A., Delft J., A numerical algorithm for the explicit calculation of $SU(n)$ and $SL(N,\mathbb{C})$ Clebsh–Gordan coefficients, arXiv: 1009.04437 | MR

[21] http://homepage.physik.uni-muenchen.de/ṽondelft/Papers/ClebshGordan

[22] Baird G. E., Biedenharn L. C., “On the representations of the semisimple Lie groups. IV. A canonical classification for tensor operators in $SU_3$”, J. Math. Phys., 5 (1964), 1730–1747 | DOI | MR | Zbl

[23] Klink W., That T., “On a resolution of the multiplicity problem for $U(n)$”, Rep. Math. Phys., 19:3 (1984), 345–348 | DOI | MR | Zbl

[24] Gelfand I. M., Graev M. I, Retakh V. S., “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, Uspekhi mat. nauk, 47:4 (1992), 3–82 | MR | Zbl

[25] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1973