Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_6_a6, author = {S. Sinchuk}, title = {Parametrized symmetric groups and the second homology of a group}, journal = {Algebra i analiz}, pages = {147--163}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_6_a6/} }
S. Sinchuk. Parametrized symmetric groups and the second homology of a group. Algebra i analiz, Tome 32 (2020) no. 6, pp. 147-163. http://geodesic.mathdoc.fr/item/AA_2020_32_6_a6/
[1] Baues H. J., Homotopy type and homology, Oxford Math. Monogr., Oxford Univ. Press, New York, 1996 | MR | Zbl
[2] Brown R., Higgins P. J., Sivera R., Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts Math., 15, European Math. Soc. (EMS), Zurich, 2011 | MR | Zbl
[3] Carter R. W., Simple groups of Lie type, Wiley Classics Library, John Wiley Sons, New York, 1989 | MR | Zbl
[4] Dennis R. K., In search of new homology functors having a close relationship to K-theory, Cornell Univ., 1976 https://www.math.uni-bielefeld.de/r̃ehmann/Publ/in_search.pdf
[5] Goerss P. G., Jardine J. F., Simplicial homotopy theory, Modern Birkhauser Classics, Birkhauser Verlag, Basel, 2009 | MR
[6] Kassel C., Reutenauer C., “Une variante à la Coxeter du groupe de Steinberg”, K-theory, 14:4 (1211), 305–318 http://www.math.uiuc.edu/K-theory/0167/KsRt121196.pdf | DOI
[7] Loday J.-L., Stein M. R., “Parametrized braid groups of Chevalley groups”, Doc. Math., 10 (2005), 391–416, arXiv: abs/math/0212206 | MR | Zbl
[8] Magnus W., Karrass A., Solitar D., Combinatorial group theory. Presentations of groups in terms of generators and relations, Dover Publ., Inc., New York, 1976 | MR | Zbl
[9] May J. P., A concise course in algebraic topology, Chicago Lectures Math., Univ. Chicago Press, Chicago, IL, 1999 | MR | Zbl
[10] Miller C., “The second homology group of a group; relations among commutators”, Proc. Amer. Math. Soc., 3 (1952), 588–595 | DOI | MR | Zbl
[11] Podkorytov S., “Straight homotopy invariants”, Topology Proc., 49 (2017), 41–64 http://www.pdmi.ras.ru/s̃sp/se.pdf | MR | Zbl
[12] Rehmann U., “Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers”, J. Reine Angew. Math., 301 (1978), 77–104 http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0301&DMDID=DMDLOG_0009 | MR | Zbl
[13] Weibel C. A., The K-book. An introduction to algebraic K-theory, Grad. Stud. in Math., 145, Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl