Parametrized symmetric groups and the second homology of a group
Algebra i analiz, Tome 32 (2020) no. 6, pp. 147-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a symmetric group parametrized by elements of a group is introduced. It is shown that this group is an extension of a subgroup of the wreath product $G \wr S_n$ by $\mathrm{H}_2(G, \mathbb{Z})$. Motivation behind this construction is also discussed.
Keywords: extensions of type $\mathfrak{H}_n(G)$, amalgamated products, van Kampen theorem.
@article{AA_2020_32_6_a6,
     author = {S. Sinchuk},
     title = {Parametrized symmetric groups and the second homology of a group},
     journal = {Algebra i analiz},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_6_a6/}
}
TY  - JOUR
AU  - S. Sinchuk
TI  - Parametrized symmetric groups and the second homology of a group
JO  - Algebra i analiz
PY  - 2020
SP  - 147
EP  - 163
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_6_a6/
LA  - en
ID  - AA_2020_32_6_a6
ER  - 
%0 Journal Article
%A S. Sinchuk
%T Parametrized symmetric groups and the second homology of a group
%J Algebra i analiz
%D 2020
%P 147-163
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_6_a6/
%G en
%F AA_2020_32_6_a6
S. Sinchuk. Parametrized symmetric groups and the second homology of a group. Algebra i analiz, Tome 32 (2020) no. 6, pp. 147-163. http://geodesic.mathdoc.fr/item/AA_2020_32_6_a6/

[1] Baues H. J., Homotopy type and homology, Oxford Math. Monogr., Oxford Univ. Press, New York, 1996 | MR | Zbl

[2] Brown R., Higgins P. J., Sivera R., Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts Math., 15, European Math. Soc. (EMS), Zurich, 2011 | MR | Zbl

[3] Carter R. W., Simple groups of Lie type, Wiley Classics Library, John Wiley Sons, New York, 1989 | MR | Zbl

[4] Dennis R. K., In search of new homology functors having a close relationship to K-theory, Cornell Univ., 1976 https://www.math.uni-bielefeld.de/r̃ehmann/Publ/in_search.pdf

[5] Goerss P. G., Jardine J. F., Simplicial homotopy theory, Modern Birkhauser Classics, Birkhauser Verlag, Basel, 2009 | MR

[6] Kassel C., Reutenauer C., “Une variante à la Coxeter du groupe de Steinberg”, K-theory, 14:4 (1211), 305–318 http://www.math.uiuc.edu/K-theory/0167/KsRt121196.pdf | DOI

[7] Loday J.-L., Stein M. R., “Parametrized braid groups of Chevalley groups”, Doc. Math., 10 (2005), 391–416, arXiv: abs/math/0212206 | MR | Zbl

[8] Magnus W., Karrass A., Solitar D., Combinatorial group theory. Presentations of groups in terms of generators and relations, Dover Publ., Inc., New York, 1976 | MR | Zbl

[9] May J. P., A concise course in algebraic topology, Chicago Lectures Math., Univ. Chicago Press, Chicago, IL, 1999 | MR | Zbl

[10] Miller C., “The second homology group of a group; relations among commutators”, Proc. Amer. Math. Soc., 3 (1952), 588–595 | DOI | MR | Zbl

[11] Podkorytov S., “Straight homotopy invariants”, Topology Proc., 49 (2017), 41–64 http://www.pdmi.ras.ru/s̃sp/se.pdf | MR | Zbl

[12] Rehmann U., “Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers”, J. Reine Angew. Math., 301 (1978), 77–104 http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0301&DMDID=DMDLOG_0009 | MR | Zbl

[13] Weibel C. A., The K-book. An introduction to algebraic K-theory, Grad. Stud. in Math., 145, Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl