On the separability of cyclotomic schemes over finite fields
Algebra i analiz, Tome 32 (2020) no. 6, pp. 124-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2020_32_6_a5,
     author = {I. N. Ponomarenko},
     title = {On the separability of cyclotomic schemes over finite fields},
     journal = {Algebra i analiz},
     pages = {124--146},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_6_a5/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
TI  - On the separability of cyclotomic schemes over finite fields
JO  - Algebra i analiz
PY  - 2020
SP  - 124
EP  - 146
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_6_a5/
LA  - ru
ID  - AA_2020_32_6_a5
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%T On the separability of cyclotomic schemes over finite fields
%J Algebra i analiz
%D 2020
%P 124-146
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_6_a5/
%G ru
%F AA_2020_32_6_a5
I. N. Ponomarenko. On the separability of cyclotomic schemes over finite fields. Algebra i analiz, Tome 32 (2020) no. 6, pp. 124-146. http://geodesic.mathdoc.fr/item/AA_2020_32_6_a5/

[1] Cai J.-Y., Fürer M., Immerman N., “An optimal lower bound on the number of variables for graph identification”, Combinatorica, 12:4 (1992), 389–410 | DOI | MR | Zbl

[2] Chen G., Ponomarenko I., “Coherent configurations associated with TI-subgroups”, J. Algebra, 488 (2017), 201–229 | DOI | MR | Zbl

[3] Chen G., Ponomarenko I., Coherent configurations, Central China Normal Univ. Press, 2019

[4] Evdokimov S., Ponomarenko I., “Separability number and Schurity number of coherent configurations”, Electron. J. Combin., 7 (2000), 31 | DOI | MR

[5] Evdokimov S. A., Ponomarenko I. N., “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55

[6] Fuhlbrück F., Köbler J, Verbitsky O., “Identiability of graphs with small color classes by the Weisfeiler–Leman algorithm”, Proc. $37$th Internat. Symposium on Theoretical Aspects of Computer Science, Leibniz Internat. Proc. Inform. (LIPIcs), 154, Dagstühl Publ., Dagstühl, 2020, 43:1–43:18

[7] Grohe M., Descriptive complexity, canonisation, and definable graph structure theory, Lecture Notes in Logic, 47, Cambridge Univ. Press, Cambridge, 2017 | MR | Zbl

[8] Hanaki A., Miyamoto I., Classification of association schemes with small number of vertices, 2016 http://math.shinshu-u.ac.jp/h̃anaki/as/

[9] Hirasaka M., Kim K., Ponomarenko I., “Two-valenced association schemes and the Desargues theorem”, Arab. J. Math., 9:3 (2020), 481–493 | DOI | MR | Zbl

[10] Klin M., Pech C., Reichard S., COCO2P — a { GAP$4$} package, ver. $0.18$, , 2020 https://github.com/chpech/COCO2P/archive/coco2p-0.18.tar.gz

[11] Muzychuk M., On Skew Hadamard difference sets, 2010, arXiv: 1012.2089

[12] Muzychuk M., Ponomarenko I., “On pseudocyclic association schemes”, Ars Math. Contemp., 5:1 (2012), 1–25 | DOI | MR | Zbl