Szegő-type limit theorems for “multiplicative Toeplitz” operators and non-Følner approximations
Algebra i analiz, Tome 32 (2020) no. 6, pp. 101-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss an analog of the First Szegő Limit Theorem for multiplicative Toeplitz operators and highlight the role of the multliplicative Følner condition in this topic.
Keywords: Toeplitz operators, Szegő theorem, multiplicative Toeplitz operators
Mots-clés : Følner sequence.
@article{AA_2020_32_6_a4,
     author = {N. Nikolski and A. Pushnitski},
     title = {Szeg\H{o}-type limit theorems for {\textquotedblleft}multiplicative {Toeplitz{\textquotedblright}} operators and {non-F{\o}lner} approximations},
     journal = {Algebra i analiz},
     pages = {101--123},
     year = {2020},
     volume = {32},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_6_a4/}
}
TY  - JOUR
AU  - N. Nikolski
AU  - A. Pushnitski
TI  - Szegő-type limit theorems for “multiplicative Toeplitz” operators and non-Følner approximations
JO  - Algebra i analiz
PY  - 2020
SP  - 101
EP  - 123
VL  - 32
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_6_a4/
LA  - en
ID  - AA_2020_32_6_a4
ER  - 
%0 Journal Article
%A N. Nikolski
%A A. Pushnitski
%T Szegő-type limit theorems for “multiplicative Toeplitz” operators and non-Følner approximations
%J Algebra i analiz
%D 2020
%P 101-123
%V 32
%N 6
%U http://geodesic.mathdoc.fr/item/AA_2020_32_6_a4/
%G en
%F AA_2020_32_6_a4
N. Nikolski; A. Pushnitski. Szegő-type limit theorems for “multiplicative Toeplitz” operators and non-Følner approximations. Algebra i analiz, Tome 32 (2020) no. 6, pp. 101-123. http://geodesic.mathdoc.fr/item/AA_2020_32_6_a4/

[1] Ara P., Lledó F., Yakubovich D., “Følner sequences in operator theory and operator algebras”, Oper. Theory Adv. Appl., 242, Birkhäuser-Springer, Basel, 2014, 1–24 | MR | Zbl

[2] Balazard M., “Fonctions arithmétiques multiplicativement monotones”, Bull. Belg. Math. Soc. Simon Stevin, 26:2 (2019), 161–176 | DOI | MR | Zbl

[3] Bédos E., “On Følner nets, Szegő's theorem and other eigenvalue distribution theorems”, Expo. Math., 15:3 (1997), 193–228 | MR | Zbl

[4] Böttcher A., Silbermann B., Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[5] Böttcher A., Otte P., “The first Szegő limit theorem for non-selfadjoint operators in the Følner algebra”, Math. Scand., 97:1 (2005), 115–126 | DOI | MR | Zbl

[6] Hagen R., Roch S., Silbermann B., $C^*$-algebras and numerical analysis, Marcel Dekker, 2001 | MR

[7] Hedenmalm H., Lindqvist P., Seip K., “A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$”, Duke Math. J., 86:1 (1997), 1–37 | DOI | MR | Zbl

[8] Hilberdink T., “Singular values of multiplicative Toeplitz matrices”, Linear Multilinear Algebra, 65:4 (2017), 813–829 | DOI | MR | Zbl

[9] Laptev A., Safarov Yu., “Szegő type limit theorems”, J. Funct. Anal., 138:2 (1996), 544–559 | DOI | MR | Zbl

[10] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, 1953 | MR

[11] Li D., Queffélec H., Introduction to Banach spaces: analysis and probability, v. 2, Cambridge Stud. Adv. Math., 167, Cambridge Univ. Press, Cambridge, 2018 | MR | Zbl

[12] Nikolski N., Hardy spaces, Cambridge Stud. Adv. Math., 179, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl

[13] Nikolski N., Toeplitz matrices and operators, Cambridge Univ. Press, Cambridge (to appear) | Zbl

[14] Otte P., “An abstract Szegő theorem”, J. Math. Anal. Appl., 289:1 (2004), 167–179 | DOI | MR | Zbl

[15] Queffélec H., Queffélec M., Diophantine approximation and Dirichlet series, Harish-Chandra Res. Inst. Lecture Notes, 2, Hindustan Book Agency, New Delhi, 2013 | MR | Zbl

[16] Ramachandra K., On the mean-value and omega-theorems for the Riemann zeta-function, Lectures Math. Phys., 85, Tata Inst. Fundam. Res., Bombay, India, 1995 | MR | Zbl

[17] Simon B., Orthogonal polynomials on the unit circle, v. 1, Amer. Math. Soc. Colloquium Publ., 54, Classical theory, no. 1, Amer. Math. Soc., Providence, RI, 2005 | MR

[18] Szegő G., “Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion”, Math. Ann., 76:4 (1915), 490–503 | DOI | MR | Zbl

[19] Szegő G., “Beiträge zur Theorie der Toeplitzsche Formen. I”, Math. Z., 6:3–4 (1920), 167–202 | DOI | MR

[20] Titchmarsh E. C., The theory of the Riemann zeta-function, Second ed., Oxford Univ. Press, New York, 1986 | MR | Zbl

[21] Toeplitz O., “Zur Theorie der Dirichletschen Reihen”, Amer. J. Math., 60:4 (1938), 880–888 | DOI | MR

[22] Verblunsky S., “On positive harmonic functions”, Proc. London Math. Soc. (2), 40 (1935), 290–320 | MR