Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_6_a1, author = {V. A. Borovitskiǐ}, title = {Weighted {Littlewood--Paley} inequality for arbitrary rectangles in~$\mathbb{R}^2$}, journal = {Algebra i analiz}, pages = {24--57}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_6_a1/} }
V. A. Borovitskiǐ. Weighted Littlewood--Paley inequality for arbitrary rectangles in~$\mathbb{R}^2$. Algebra i analiz, Tome 32 (2020) no. 6, pp. 24-57. http://geodesic.mathdoc.fr/item/AA_2020_32_6_a1/
[1] Bourgain J., “On square functions on the trigonometric system”, Bull. Soc. Math. Belg. Sér. B, 37:1 (1985), 20–26 | MR | Zbl
[2] Carbery A., Seeger A., “$H^p$- and $L^p$-variants of multiparameter Calderon–Zygmund theory”, Trans. Amer. Math. Soc., 334:2 (1992), 719–747 | MR | Zbl
[3] Ding Y., Han Y., Lu G., Wu X., “Boundedness of singular integrals on multiparameter weighted Hardy spaces $H^p_w(\mathbb{R}^n \times \mathbb{R}^m)$”, Potential Anal., 37:1 (2012), 31–56 | DOI | MR | Zbl
[4] Fefferman C., “The multiplier problem for the ball”, Ann. Math., 94:2 (1971), 330–336 | DOI | MR | Zbl
[5] Fefferman R., “Calderon–Zygmund theory for product domains: $H^p$ spaces”, Proc. Nat. Acad. Sci. U.S.A., 83:4 (1986), 840–843 | DOI | MR | Zbl
[6] Fefferman R., “Harmonic analysis on product spaces”, Ann. of Math. (2), 126:1 (1987), 109–130 | DOI | MR | Zbl
[7] García-Cuerva J., Weighted $H^p$ spaces, Inst. Mat. Polsk. Akad. Nauk, Warszawa, 1979 | MR
[8] Journé J.-L., “Calderón–Zygmund operators on product spaces”, Rev. Mat. Iberoamericana, 1:3 (1985), 55–91 | DOI | MR | Zbl
[9] Lee M.-Y., “Boundedness of Calderón–Zygmund operators on weighted product Hardy spaces”, J. Operator Theory, 72:1 (2014), 115–133 | DOI | MR | Zbl
[10] Malinnikova E., Osipov N. N., “Two types of Rubio de Francia operators on Triebel–Lizorkin and Besov spaces”, J. Fourier Anal. Appl., 25:3 (2019), 804–818 | DOI | MR | Zbl
[11] Osipov N. N., “Neravenstvo Litlvuda–Peli–Rubio de Fransia v prostranstvakh Mori–Kampanato”, Mat. sb., 205:7 (2014), 95–114 | MR | Zbl
[12] Ruan Z. P., “The Calderón–Zygmund decomposition and interpolation on weighted Hardy spaces”, Acta Math. Sin. (Engl. Ser.), 27:10 (2011), 1967–1978 | DOI | MR | Zbl
[13] Rubio de Francia J. L., “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamericana, 1:2 (1985), 1–14 | DOI | MR | Zbl
[14] Soria F., “A note on a Littlewood–Paley inequality for arbitrary intervals in $\mathbb{R}^2$”, J. London Math. Soc. (2), 36:1 (1987), 137–142 | DOI | MR | Zbl
[15] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[16] Strömberg J.-O., Wheeden R. L., “Relations between $H^p_u$and $L^p_u$ in a product space”, Trans. Amer. Math. Soc., 315:2 (1989), 769–797 | MR | Zbl
[17] Borovitskii V. A., “K-zamknutost dlya vesovykh prostranstv Khardi na tore $\mathbb{T}^2$”, Zap. nauch. semin. POMI, 456, 2017, 25–36
[18] Kislyakov S. V., Parilov D. V., “O teoreme Litlvuda–Peli dlya proizvolnykh intervalov”, Zap. nauch. semin. POMI, 327, 2005, 98–114 | Zbl
[19] Kislyakov S. V., “Teorema Litlvuda–Peli dlya proizvolnykh intervalov: vesovye otsenki”, Zap. nauch. semin. POMI, 355, 2008, 180–198
[20] Osipov N. N., “Neravenstvo Litlvuda–Peli dlya proizvolnykh pryamougolnikov v $\mathbb{R}^2$ pri $0 p \leq 2$”, Algebra i analiz, 22:2 (2010), 164–184
[21] Osipov N. N., “Odnostoronnee neravenstvo Litlvuda–Peli v $\mathbb{R}^n$ dlya $0 p \leq 2$”, Zap. nauch. semin. POMI, 376, 2010, 88–115