Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_5_a1, author = {A. M. Budylin}, title = {Singular matrix factorization problem with quadratically oscillating off-diagonal elements. {Quasiclassical} asymptotics of solutions with a diagonal element vanishing at the stationary point}, journal = {Algebra i analiz}, pages = {37--61}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_5_a1/} }
TY - JOUR AU - A. M. Budylin TI - Singular matrix factorization problem with quadratically oscillating off-diagonal elements. Quasiclassical asymptotics of solutions with a diagonal element vanishing at the stationary point JO - Algebra i analiz PY - 2020 SP - 37 EP - 61 VL - 32 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_5_a1/ LA - ru ID - AA_2020_32_5_a1 ER -
%0 Journal Article %A A. M. Budylin %T Singular matrix factorization problem with quadratically oscillating off-diagonal elements. Quasiclassical asymptotics of solutions with a diagonal element vanishing at the stationary point %J Algebra i analiz %D 2020 %P 37-61 %V 32 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2020_32_5_a1/ %G ru %F AA_2020_32_5_a1
A. M. Budylin. Singular matrix factorization problem with quadratically oscillating off-diagonal elements. Quasiclassical asymptotics of solutions with a diagonal element vanishing at the stationary point. Algebra i analiz, Tome 32 (2020) no. 5, pp. 37-61. http://geodesic.mathdoc.fr/item/AA_2020_32_5_a1/
[1] Deift P. A., Its A. R., Zhou X., “A Riemann–Hilbert approach to asymptotic problems arising in theory of random matrix models, and also in the theory of integrable statistical mechanics”, Ann. of Math. (2), 146:1 (1997), 149–235 | DOI | MR | Zbl
[2] Deift P. A., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[3] Deift P. A., Zhou X., Long-time behavior of the non-focusing nonlinear Schrödinger equation — a case study, Lectures Math. Sci., 5, Tokyo Univ., Tokyo, 1994 | MR
[4] Deift P., Venakides S., Zhou X., “The collisionless shock region for the long-time behavior of solutions of the KdV equation”, Comm. Pure Appl. Math., 47:2 (1994), 199–206 | DOI | MR | Zbl
[5] Budylin A. M., Buslaev V. S., “Kvaziklassicheskie asimptotiki reshenii matrichnoi zadachi sopryazheniya s kvadratichnoi ostsillyatsiei vnediagonalnykh elementov”, Funkts. anal. i ego pril., 48:1 (2014), 1–18 | MR | Zbl
[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966
[7] Budylin A. M., Buslaev V. S., “Uravnenie Gelfanda–Levitana–Marchenko i asimptoticheskoe povedenie reshenii nelineinogo uravneniya Shredingera pri bolshikh vremenakh”, Algebra i analiz, 12:5 (2000), 64–105
[8] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983