Remarks on the convexity of free boundaries (Scalar and system cases)
Algebra i analiz, Tome 32 (2020) no. 4, pp. 146-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convexity is discussed for several free boundary value problems in exterior domains that are generally formulated as $$ \Delta u = f(u) \text{ in } \Omega \setminus D, |\nabla u | = g \text{ on } \partial \Omega , u\geq 0 \text{ in } \mathbb{R}^n $$ where $u$ is assumed to be continuous in $\mathbb{R}^n$, $ \Omega = \{u > 0\}$ (is unknown), $u=1$ on $\partial D$, and $D$ is a bounded domain in $\mathbb{R}^n$ ($n\geq 2$). Here $g= g(x)$ is a given smooth function that is either strictly positive (Bernoulli-type) or identically zero (obstacle type). Properties for $f$ will be spelled out in exact terms in the text. The interest in the particular case where $D$ is star-shaped or convex. The focus is on the case where $f(u)$ lacks monotonicity, so that the recently developed tool of quasiconvex rearrangement is not applicable directly. Nevertheless, such quasiconvexity is used in a slightly different manner, and in combination with scaling and asymptotic expansion of solutions at regular points. The latter heavily relies on the regularity theory of free boundaries. Also, convexity for several systems of equations in a general framework is discussed, and some ideas along with several open problems are presented.
Keywords: convexity, starshapedness, uniqueness, system of equations.
@article{AA_2020_32_4_a2,
     author = {L. El Hajj and H. Shahgholian},
     title = {Remarks on the convexity of free boundaries {(Scalar} and system cases)},
     journal = {Algebra i analiz},
     pages = {146--165},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_4_a2/}
}
TY  - JOUR
AU  - L. El Hajj
AU  - H. Shahgholian
TI  - Remarks on the convexity of free boundaries (Scalar and system cases)
JO  - Algebra i analiz
PY  - 2020
SP  - 146
EP  - 165
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_4_a2/
LA  - en
ID  - AA_2020_32_4_a2
ER  - 
%0 Journal Article
%A L. El Hajj
%A H. Shahgholian
%T Remarks on the convexity of free boundaries (Scalar and system cases)
%J Algebra i analiz
%D 2020
%P 146-165
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_4_a2/
%G en
%F AA_2020_32_4_a2
L. El Hajj; H. Shahgholian. Remarks on the convexity of free boundaries (Scalar and system cases). Algebra i analiz, Tome 32 (2020) no. 4, pp. 146-165. http://geodesic.mathdoc.fr/item/AA_2020_32_4_a2/

[1] Alt H. W., Caffarelli L. A., “Existence and regularity for a minimum problem with free boundary”, J. Reine Angew. Math., 325 (1981), 105–144 | MR | Zbl

[2] Alt H. W., Phillips D., “A free boundary problem for semilinear elliptic equations”, J. Reine Angew. Math., 368 (1986), 63–107 | MR | Zbl

[3] Anderson J., Shahgholian H., Uraltseva N. N., Weiss G. S., “Equilibrium points of a singular cooperative system with free boundary”, Adv. Math., 280 (2015), 743–771 | DOI | MR

[4] Ball J. M., Kirchheim B., Kristensen J., “Regularity of quasiconvex envelopes”, Calc. Var. Partial Differential Equations, 11:4 (2000), 333–359 | DOI | MR | Zbl

[5] Brandolini B., Nitscha C., Salani P., Trombetti C., “On the stability of the Serrin problem”, J. Differential Equations, 245:6 (2008), 1566–1583 | DOI | MR | Zbl

[6] Caffarelli L., Shahgholian H., Yeressian K., “A minimization problem with free boundary related to a cooperative system”, Duke Math. J., 167:10 (2018), 1825–1882 | DOI | MR | Zbl

[7] Colesanti A., Salani P., “Quasi-concave envelope of a function and convexity of level sets of solutions to elliptic equations”, Math. Nachr., 258 (2003), 3–15 | DOI | MR | Zbl

[8] El Hajj L., “A convexity problem for a semi-linear PDE”, Applicable Analysis | DOI

[9] Farina A., Valdinoci E., “Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems”, Arch. Rational Mech. Anal., 195:3 (2010), 1025–1058 | DOI | MR | Zbl

[10] Friedman A., Philipps D., “The free boundary of a semilinear elliptic equation”, Trans. Amer. Math. Soc., 282 (1984), 153–182 | DOI | MR | Zbl

[11] Gonzalez M. del Mar, Gualdani M., Shahgholian H., “A discrete Bernoulli free boundary problem”, Proc. St. Petersburg Math. Soc., v. XV, Amer. Math. Soc. Transl. Ser. 2, 232, Advances in mathematical analysis of partial differential equations, Amer. Math. Soc., Providence, RI, 2014, 119–140 | MR | Zbl

[12] Gustafsson B., Shahgholian H., “Existence and geometric properties of solutions of a free boundary problem in potential theory”, J. Reine Angew. Math., 473 (1996), 137–179 | MR | Zbl

[13] Greco A., Kawohl B., “On the convexity of some free boundaries”, Interfaces Free Bound., 11:4 (2009), 503–514 | DOI | MR | Zbl

[14] Ishii H., “On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions”, Funkcial Ekvac. Ser. Int., 38:1 (1995), 101–120 | MR | Zbl

[15] Korevaar N. J., “Convex solutions to nonlinear elliptic and parabolic boundary value problems”, Indiana Univ. Math. J., 32:4 (1983), 603–614 | DOI | MR | Zbl

[16] Laurence P., Stredulinsky E., “Existence of regular solutions with convex levels for semilinear elliptic equations with nonmonotone $L1$ nonlinearities. I. An approximating free boundary problem”, Indiana Univ. Math. J., 39:4 (1990), 1081–1114 | DOI | MR | Zbl

[17] Lewis J. L., “Capacitary functions in convex rings”, Arch. Rational Mech. Anal., 66:3 (1977), 201–224 | DOI | MR | Zbl

[18] Magnanini R., Sakaguchi S., “Matzoh ball soup$:$ heat conductors with a stationary isothermic surface”, Ann. of Math. (2), 156:3 (2002), 931–946 | DOI | MR | Zbl

[19] Magnanini R., Sakaguchi S., “Stationary isothermic surfaces for unbounded domains”, Indiana Univ. Math. J., 56:6 (2007), 2723–2738 | DOI | MR

[20] Magnanini R., Sakaguchi S., “Nonlinear diffusion with a bounded stationary level surface”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27:3 (2010), 937–952 | DOI | MR | Zbl

[21] Serrin J., “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl

[22] Shahgholian H., “Diversifications of Serrin's and related symmetry problems”, Complex Var. Elliptic Equ., 57:6 (2012), 653–665 | DOI | MR | Zbl

[23] Weinberger H. F., “Remark on the preceding paper of Serrin”, Arch. Ration. Mech. Anal., 43 (1971), 319–320 | DOI | MR | Zbl