Characterizing compact coincidence sets in the obstacle problem~--- a short proof
Algebra i analiz, Tome 32 (2020) no. 4, pp. 137-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: free boundary, null quadrature domains, Hele-Shaw flow, coincidence set.
@article{AA_2020_32_4_a1,
     author = {S. Eberle and G. S. Weiss},
     title = {Characterizing compact coincidence sets in the obstacle problem~--- a short proof},
     journal = {Algebra i analiz},
     pages = {137--145},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_4_a1/}
}
TY  - JOUR
AU  - S. Eberle
AU  - G. S. Weiss
TI  - Characterizing compact coincidence sets in the obstacle problem~--- a short proof
JO  - Algebra i analiz
PY  - 2020
SP  - 137
EP  - 145
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_4_a1/
LA  - en
ID  - AA_2020_32_4_a1
ER  - 
%0 Journal Article
%A S. Eberle
%A G. S. Weiss
%T Characterizing compact coincidence sets in the obstacle problem~--- a short proof
%J Algebra i analiz
%D 2020
%P 137-145
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_4_a1/
%G en
%F AA_2020_32_4_a1
S. Eberle; G. S. Weiss. Characterizing compact coincidence sets in the obstacle problem~--- a short proof. Algebra i analiz, Tome 32 (2020) no. 4, pp. 137-145. http://geodesic.mathdoc.fr/item/AA_2020_32_4_a1/

[1] Caffarelli L. A., Karp L., Shahgholian H., “Regularity of a free boundary with application to the Pompeiu problem”, Ann. of Math. (2), 151:1 (2000), 269–292 | DOI | MR | Zbl

[2] DiBenedetto E., Friedman A., “Bubble growth in porous media”, Indiana Univ. Math. J., 35:3 (1986), 573–606 | DOI | MR | Zbl

[3] Dive P., “Attraction des ellipsoïdes homogènes et réciproques d'un théorème de Newton”, Bull. Soc. Math. France, 59 (1931), 128–140 | DOI | MR

[4] Friedman A., Sakai M., “A characterization of null quadrature domains in $R^N$”, Indiana Univ. Math. J., 35:3 (1986), 607–610 | DOI | MR | Zbl

[5] Karp L., Margulis A. S., “Newtonian potential theory for unbounded sources and applications to free boundary problems”, J. Anal. Math., 70 (1996), 1–63 | DOI | MR | Zbl

[6] Lewy H., “An inversion of the obstacle problem and its explicit solution”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6:4 (1979), 561–571 | MR | Zbl

[7] Monneau R., “On the number of singularities for the obstacle problem in two dimensions”, J. Geom. Anal., 13:2 (2003), 359–389 | DOI | MR

[8] Petrosyan A., Shahgholian H., Uraltseva N., Regularity of free boundaries in obstacle-type problems, Grad. Stud. in Math., 136, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl

[9] Sakai M., “Null quadrature domains”, J. Analyse Math., 40 (1981), 144–154 | DOI | MR | Zbl