Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_4_a1, author = {S. Eberle and G. S. Weiss}, title = {Characterizing compact coincidence sets in the obstacle problem~--- a short proof}, journal = {Algebra i analiz}, pages = {137--145}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_4_a1/} }
S. Eberle; G. S. Weiss. Characterizing compact coincidence sets in the obstacle problem~--- a short proof. Algebra i analiz, Tome 32 (2020) no. 4, pp. 137-145. http://geodesic.mathdoc.fr/item/AA_2020_32_4_a1/
[1] Caffarelli L. A., Karp L., Shahgholian H., “Regularity of a free boundary with application to the Pompeiu problem”, Ann. of Math. (2), 151:1 (2000), 269–292 | DOI | MR | Zbl
[2] DiBenedetto E., Friedman A., “Bubble growth in porous media”, Indiana Univ. Math. J., 35:3 (1986), 573–606 | DOI | MR | Zbl
[3] Dive P., “Attraction des ellipsoïdes homogènes et réciproques d'un théorème de Newton”, Bull. Soc. Math. France, 59 (1931), 128–140 | DOI | MR
[4] Friedman A., Sakai M., “A characterization of null quadrature domains in $R^N$”, Indiana Univ. Math. J., 35:3 (1986), 607–610 | DOI | MR | Zbl
[5] Karp L., Margulis A. S., “Newtonian potential theory for unbounded sources and applications to free boundary problems”, J. Anal. Math., 70 (1996), 1–63 | DOI | MR | Zbl
[6] Lewy H., “An inversion of the obstacle problem and its explicit solution”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6:4 (1979), 561–571 | MR | Zbl
[7] Monneau R., “On the number of singularities for the obstacle problem in two dimensions”, J. Geom. Anal., 13:2 (2003), 359–389 | DOI | MR
[8] Petrosyan A., Shahgholian H., Uraltseva N., Regularity of free boundaries in obstacle-type problems, Grad. Stud. in Math., 136, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl
[9] Sakai M., “Null quadrature domains”, J. Analyse Math., 40 (1981), 144–154 | DOI | MR | Zbl