Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a9, author = {V. G. Maz'ya and A. B. Movchan and M. J. Nieves}, title = {On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions}, journal = {Algebra i analiz}, pages = {219--237}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/} }
TY - JOUR AU - V. G. Maz'ya AU - A. B. Movchan AU - M. J. Nieves TI - On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions JO - Algebra i analiz PY - 2020 SP - 219 EP - 237 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/ LA - en ID - AA_2020_32_3_a9 ER -
%0 Journal Article %A V. G. Maz'ya %A A. B. Movchan %A M. J. Nieves %T On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions %J Algebra i analiz %D 2020 %P 219-237 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/ %G en %F AA_2020_32_3_a9
V. G. Maz'ya; A. B. Movchan; M. J. Nieves. On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions. Algebra i analiz, Tome 32 (2020) no. 3, pp. 219-237. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/
[1] Maz'ya V., Movchan A., “Asymptotic treatment of perforated domains without homogenization”, Math. Nachr., 283:1 (2010), 104–125 | DOI | MR | Zbl
[2] Maz'ya V., Movchan A., Nieves M., Green's kernels and meso-scale approximations in perforated domains, Lecture Notes in Math., 2077, Springer, Heidelberg, 2013 | DOI | MR | Zbl
[3] Maz'ya V., Movchan A., Nieves M., “Green's kernels for transmission problems in bodies with small inclusions”, Operator theory and its applications, Amer. Math. Soc. Transl. Ser. 2, 231, Amer. Math. Soc., Providence, RI, 127–171 | MR
[4] Maz'ya V., Movchan A., Nieves M., “Mesoscale asymptotic approximations to solutions of mixed boundary value problems in perforated domains”, Multiscale Model. Simul., 9:1 (2011), 424–448 | DOI | MR | Zbl
[5] Marchenko V. A., Khruslov E. Y., Homogenization of partial differential equations, Progress in Math. Phys., 46, Birkhäuser, Boston, 2006 | DOI | MR | Zbl
[6] Maz'ya V., Movchan A., Nieves M., “Eigenvalue problem in a solid with many inclusions: asymptotic analysis”, Multiscale Model. Simul., 15:2 (2017), 1003–1047 | DOI | MR
[7] Maz'ya V., Nazarov S., Plamenevskii B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1–2, Birkhäuser, Boston, 2000 | MR
[8] Linton C., “The Green's function for the two-dimensional Helmholtz equation in periodic domains”, J. Enging. Math., 33:4 (1998), 377–401 | DOI | MR
[9] Kurkcu H., Nigam N., Reitich F., “An integral representation of Green's function for a linear array of acoustic point sources”, J. Comput. Phys., 230:8 (2011), 2838–2856 | DOI | MR | Zbl
[10] Foldy L. L., “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers”, Phys. Rev. (2), 67 (1945), 107–119 | DOI | MR | Zbl
[11] Linton C. M., Martin P. A., “Semi-infinite arrays of isotropic point scatterers. A unified approach”, SIAM J. Appl. Math., 64:3 (2004), 1035–1056 | DOI | MR | Zbl
[12] Schnitzer O., Craster R. V., “Bloch waves in an arbitrary two-dimensional lattice of subwave length Dirichlet scatterers”, SIAM J. Appl. Math., 77:6 (2017), 2119–2135 | DOI | MR | Zbl
[13] Saranen J., Vainikko G., Periodic integral and pseudodifferential equations with numerical approximation, Springer Monogr. Math., Springer-Verlag, Berlin–Heidelberg, 2002 | DOI | MR | Zbl