On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions
Algebra i analiz, Tome 32 (2020) no. 3, pp. 219-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formal asymptotic algorithms are considered for a class of meso-scale approximations for problems of vibration of elastic membranes that contain clusters of small inertial inclusions distributed along contours of predefined smooth shapes. Effective transmission conditions have been identified for inertial structured interfaces, and approximations to solutions of eigenvalue problems have been derived for domains containing lower-dimensional clusters of inclusions.
Keywords: two-dimensional elastic membranes, clusters of small inclusions, inertia of inclusions.
@article{AA_2020_32_3_a9,
     author = {V. G. Maz'ya and A. B. Movchan and M. J. Nieves},
     title = {On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions},
     journal = {Algebra i analiz},
     pages = {219--237},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - A. B. Movchan
AU  - M. J. Nieves
TI  - On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions
JO  - Algebra i analiz
PY  - 2020
SP  - 219
EP  - 237
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/
LA  - en
ID  - AA_2020_32_3_a9
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A A. B. Movchan
%A M. J. Nieves
%T On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions
%J Algebra i analiz
%D 2020
%P 219-237
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/
%G en
%F AA_2020_32_3_a9
V. G. Maz'ya; A. B. Movchan; M. J. Nieves. On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions. Algebra i analiz, Tome 32 (2020) no. 3, pp. 219-237. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a9/

[1] Maz'ya V., Movchan A., “Asymptotic treatment of perforated domains without homogenization”, Math. Nachr., 283:1 (2010), 104–125 | DOI | MR | Zbl

[2] Maz'ya V., Movchan A., Nieves M., Green's kernels and meso-scale approximations in perforated domains, Lecture Notes in Math., 2077, Springer, Heidelberg, 2013 | DOI | MR | Zbl

[3] Maz'ya V., Movchan A., Nieves M., “Green's kernels for transmission problems in bodies with small inclusions”, Operator theory and its applications, Amer. Math. Soc. Transl. Ser. 2, 231, Amer. Math. Soc., Providence, RI, 127–171 | MR

[4] Maz'ya V., Movchan A., Nieves M., “Mesoscale asymptotic approximations to solutions of mixed boundary value problems in perforated domains”, Multiscale Model. Simul., 9:1 (2011), 424–448 | DOI | MR | Zbl

[5] Marchenko V. A., Khruslov E. Y., Homogenization of partial differential equations, Progress in Math. Phys., 46, Birkhäuser, Boston, 2006 | DOI | MR | Zbl

[6] Maz'ya V., Movchan A., Nieves M., “Eigenvalue problem in a solid with many inclusions: asymptotic analysis”, Multiscale Model. Simul., 15:2 (2017), 1003–1047 | DOI | MR

[7] Maz'ya V., Nazarov S., Plamenevskii B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1–2, Birkhäuser, Boston, 2000 | MR

[8] Linton C., “The Green's function for the two-dimensional Helmholtz equation in periodic domains”, J. Enging. Math., 33:4 (1998), 377–401 | DOI | MR

[9] Kurkcu H., Nigam N., Reitich F., “An integral representation of Green's function for a linear array of acoustic point sources”, J. Comput. Phys., 230:8 (2011), 2838–2856 | DOI | MR | Zbl

[10] Foldy L. L., “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers”, Phys. Rev. (2), 67 (1945), 107–119 | DOI | MR | Zbl

[11] Linton C. M., Martin P. A., “Semi-infinite arrays of isotropic point scatterers. A unified approach”, SIAM J. Appl. Math., 64:3 (2004), 1035–1056 | DOI | MR | Zbl

[12] Schnitzer O., Craster R. V., “Bloch waves in an arbitrary two-dimensional lattice of subwave length Dirichlet scatterers”, SIAM J. Appl. Math., 77:6 (2017), 2119–2135 | DOI | MR | Zbl

[13] Saranen J., Vainikko G., Periodic integral and pseudodifferential equations with numerical approximation, Springer Monogr. Math., Springer-Verlag, Berlin–Heidelberg, 2002 | DOI | MR | Zbl