Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a8, author = {V. Kozlov and J. Taskinen}, title = {Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in {Hilbert} spaces}, journal = {Algebra i analiz}, pages = {191--218}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/} }
TY - JOUR AU - V. Kozlov AU - J. Taskinen TI - Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces JO - Algebra i analiz PY - 2020 SP - 191 EP - 218 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/ LA - en ID - AA_2020_32_3_a8 ER -
%0 Journal Article %A V. Kozlov %A J. Taskinen %T Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces %J Algebra i analiz %D 2020 %P 191-218 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/ %G en %F AA_2020_32_3_a8
V. Kozlov; J. Taskinen. Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces. Algebra i analiz, Tome 32 (2020) no. 3, pp. 191-218. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/
[1] Hille E., Phillips R., Functional analysis and semi-groups, Colloquium Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR
[2] Kondratev V. A., “O razreshimosti pervoi kraevoi zadachi dlya silno ellipticheskikh uravnenii”, Tr. Mosk. mat. o-va, 16, 1967, 209–292 | Zbl
[3] Kozlov V. A., Mazýa V. G., Differential equations with operator coefficients with applications to boundary value problems for partial differential equations, Springer Monogr. Math., Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[4] Kozlov V. A., Mazýa V. G., “An asymptotic theory of higher-order operator differential equations with nonsmooth nonlinearities”, J. Funct. Anal., 217:2 (2004), 448–488 | DOI | MR | Zbl
[5] Kozlov V. A., Mazýa V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[6] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi mat. nauk, 37:4 (1982), 3–52 | MR | Zbl
[7] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser, Basel, 1993 | MR | Zbl
[8] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl
[9] Lions J.-L., Magenes E., Non-homogeneous boundary value problems and applications, v. I, Grundlehren Math. Wiss., 181, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl
[10] Mielke A., “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl
[11] Mielke A., Hamiltonian and Lagrangian flows on center manifolds, Lecture Notes in Math., 1489, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[12] Nazarov S.A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 101–112 | MR | Zbl
[13] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasi-cylindrical domains”, Sobolev Spaces in Math., v. II, Int. Math. Ser., 9, Springer, New York, 2008, 261–309 | DOI | MR
[14] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expos. Math., 13, Walter de Gruyter $\$ Co., Berlin, 1994 | MR