Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces
Algebra i analiz, Tome 32 (2020) no. 3, pp. 191-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

A first order differential equation with a periodic operator coefficient acting in a pair of Hilbert spaces is considered. This setting models both elliptic equations with periodic coefficients in a cylinder and parabolic equations with time periodic coefficients. Our main results are a construction of a pointwise projector and a spectral splitting of the system into a finite-dimensional system of ordinary differential equations with constant coefficients and an infinite dimensional part whose solutions have better properties in a certain sense. This complements the well-known asymptotic results for periodic hypoelliptic problems in cylinders and for elliptic problems in quasicylinders obtained by P. Kuchment and S. A. Nazarov, respectively. As an application we give a center manifold reduction for a class of nonlinear ordinary differential equations in Hilbert spaces with periodic coefficients. This result generalizes the known case with constant coefficients explored by A. Mielke.
Keywords: Floquet theorem, differential equations with periodic coefficients, asymptotics of solutions to differential equations, center manifold reduction.
@article{AA_2020_32_3_a8,
     author = {V. Kozlov and J. Taskinen},
     title = {Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in {Hilbert} spaces},
     journal = {Algebra i analiz},
     pages = {191--218},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/}
}
TY  - JOUR
AU  - V. Kozlov
AU  - J. Taskinen
TI  - Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces
JO  - Algebra i analiz
PY  - 2020
SP  - 191
EP  - 218
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/
LA  - en
ID  - AA_2020_32_3_a8
ER  - 
%0 Journal Article
%A V. Kozlov
%A J. Taskinen
%T Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces
%J Algebra i analiz
%D 2020
%P 191-218
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/
%G en
%F AA_2020_32_3_a8
V. Kozlov; J. Taskinen. Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces. Algebra i analiz, Tome 32 (2020) no. 3, pp. 191-218. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a8/

[1] Hille E., Phillips R., Functional analysis and semi-groups, Colloquium Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR

[2] Kondratev V. A., “O razreshimosti pervoi kraevoi zadachi dlya silno ellipticheskikh uravnenii”, Tr. Mosk. mat. o-va, 16, 1967, 209–292 | Zbl

[3] Kozlov V. A., Mazýa V. G., Differential equations with operator coefficients with applications to boundary value problems for partial differential equations, Springer Monogr. Math., Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[4] Kozlov V. A., Mazýa V. G., “An asymptotic theory of higher-order operator differential equations with nonsmooth nonlinearities”, J. Funct. Anal., 217:2 (2004), 448–488 | DOI | MR | Zbl

[5] Kozlov V. A., Mazýa V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[6] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi mat. nauk, 37:4 (1982), 3–52 | MR | Zbl

[7] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser, Basel, 1993 | MR | Zbl

[8] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl

[9] Lions J.-L., Magenes E., Non-homogeneous boundary value problems and applications, v. I, Grundlehren Math. Wiss., 181, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl

[10] Mielke A., “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl

[11] Mielke A., Hamiltonian and Lagrangian flows on center manifolds, Lecture Notes in Math., 1489, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[12] Nazarov S.A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 101–112 | MR | Zbl

[13] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasi-cylindrical domains”, Sobolev Spaces in Math., v. II, Int. Math. Ser., 9, Springer, New York, 2008, 261–309 | DOI | MR

[14] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expos. Math., 13, Walter de Gruyter $\$ Co., Berlin, 1994 | MR