On a class of sharp multiplicative Hardy inequalities
Algebra i analiz, Tome 32 (2020) no. 3, pp. 180-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of weighted Hardy inequalities is treated. The sharp constants depend on the lowest eigenvalues of auxiliary Schrödinger operators on a sphere. In particular, for some block radial weights such sharp constants are given in terms of the lowest eigenvalue of a Legendre type equation.
Keywords: Schrödinger operators, Hardy inequalities.
@article{AA_2020_32_3_a7,
     author = {D. Guzu and T. Hoffmann-Ostenhof and A. Laptev},
     title = {On a class of sharp multiplicative {Hardy} inequalities},
     journal = {Algebra i analiz},
     pages = {180--190},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a7/}
}
TY  - JOUR
AU  - D. Guzu
AU  - T. Hoffmann-Ostenhof
AU  - A. Laptev
TI  - On a class of sharp multiplicative Hardy inequalities
JO  - Algebra i analiz
PY  - 2020
SP  - 180
EP  - 190
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a7/
LA  - en
ID  - AA_2020_32_3_a7
ER  - 
%0 Journal Article
%A D. Guzu
%A T. Hoffmann-Ostenhof
%A A. Laptev
%T On a class of sharp multiplicative Hardy inequalities
%J Algebra i analiz
%D 2020
%P 180-190
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a7/
%G en
%F AA_2020_32_3_a7
D. Guzu; T. Hoffmann-Ostenhof; A. Laptev. On a class of sharp multiplicative Hardy inequalities. Algebra i analiz, Tome 32 (2020) no. 3, pp. 180-190. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a7/

[1] Balinsky A. A., Evans W. D., Lewis R. T., “On the number of negative eigenvalues of Schrödinger operators with an Aharonov–Bohm magnetic field”, Proc. R. Soc. Lond., Ser. A Math. Phys. Eng. Sci., 457:2014 (2001), 2481–2489 | DOI | MR | Zbl

[2] Davies E. B., “A review of Hardy inequalities”, The Maz$'$ya anniversary collection, v. 2, Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, 1999, 55–67 | MR | Zbl

[3] Dolbeault J. D., Esteban M. J., Laptev A., “Spectral estimates on the sphere”, Anal. PDE, 7:2 (2014), 435–460 | DOI | MR | Zbl

[4] Dolbeault J., Esteban M. J., Laptev A., Loss M., “Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates”, C. R. Math. Acad. Sci. Paris, 351:11-12 (2013), 437–440 | DOI | MR | Zbl

[5] Dolbeault J., Esteban M. J., Laptev A., Loss M., “Magnetic rings”, J. Math. Phys., 59:5 (2018), 051504 | DOI | MR | Zbl

[6] Hoffmann-Ostenhof T., Laptev A., “Hardy inequalities with homogeneous weights”, J. Funct. Anal., 268:11 (2015), 3278–3289 | DOI | MR | Zbl

[7] Keller M., Pinchover Y., Pogorzelski F., “Optimal Hardy inequalities for Schrödinger operators on graphs”, Comm. Math. Phys., 358:2 (2018), 767–790 | DOI | MR | Zbl

[8] Mazya V. G., Prostranstva S. L. Soboleva, Leningrad. un-t, Leningrad, 1985 | MR

[9] Mazya V. G., Shaposhnikova T. O., “Teoriya multiplikatorov v prostranstvakh differentsiruemykh funktsii”, Uspekhi mat. nauk, 38:3 (1983), 23–86 | MR | Zbl

[10] Skrzypczak L., Tintarev K., “On a Caffarelli–Kohn–Nirenberg inequalities for block-radial functions”, Potential Anal., 45 (2016), 65–81 | DOI | MR | Zbl

[11] Lieb E. H., Seiringer R., The stability of matter in quantum mechanics, Cambridge Univ. Press, 2010 | MR