Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a7, author = {D. Guzu and T. Hoffmann-Ostenhof and A. Laptev}, title = {On a class of sharp multiplicative {Hardy} inequalities}, journal = {Algebra i analiz}, pages = {180--190}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a7/} }
D. Guzu; T. Hoffmann-Ostenhof; A. Laptev. On a class of sharp multiplicative Hardy inequalities. Algebra i analiz, Tome 32 (2020) no. 3, pp. 180-190. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a7/
[1] Balinsky A. A., Evans W. D., Lewis R. T., “On the number of negative eigenvalues of Schrödinger operators with an Aharonov–Bohm magnetic field”, Proc. R. Soc. Lond., Ser. A Math. Phys. Eng. Sci., 457:2014 (2001), 2481–2489 | DOI | MR | Zbl
[2] Davies E. B., “A review of Hardy inequalities”, The Maz$'$ya anniversary collection, v. 2, Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, 1999, 55–67 | MR | Zbl
[3] Dolbeault J. D., Esteban M. J., Laptev A., “Spectral estimates on the sphere”, Anal. PDE, 7:2 (2014), 435–460 | DOI | MR | Zbl
[4] Dolbeault J., Esteban M. J., Laptev A., Loss M., “Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates”, C. R. Math. Acad. Sci. Paris, 351:11-12 (2013), 437–440 | DOI | MR | Zbl
[5] Dolbeault J., Esteban M. J., Laptev A., Loss M., “Magnetic rings”, J. Math. Phys., 59:5 (2018), 051504 | DOI | MR | Zbl
[6] Hoffmann-Ostenhof T., Laptev A., “Hardy inequalities with homogeneous weights”, J. Funct. Anal., 268:11 (2015), 3278–3289 | DOI | MR | Zbl
[7] Keller M., Pinchover Y., Pogorzelski F., “Optimal Hardy inequalities for Schrödinger operators on graphs”, Comm. Math. Phys., 358:2 (2018), 767–790 | DOI | MR | Zbl
[8] Mazya V. G., Prostranstva S. L. Soboleva, Leningrad. un-t, Leningrad, 1985 | MR
[9] Mazya V. G., Shaposhnikova T. O., “Teoriya multiplikatorov v prostranstvakh differentsiruemykh funktsii”, Uspekhi mat. nauk, 38:3 (1983), 23–86 | MR | Zbl
[10] Skrzypczak L., Tintarev K., “On a Caffarelli–Kohn–Nirenberg inequalities for block-radial functions”, Potential Anal., 45 (2016), 65–81 | DOI | MR | Zbl
[11] Lieb E. H., Seiringer R., The stability of matter in quantum mechanics, Cambridge Univ. Press, 2010 | MR