The leading edge of a free boundary interacting with a line of fast diffusion
Algebra i analiz, Tome 32 (2020) no. 3, pp. 149-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this work is to explain an unexpected feature of the expanding level sets of the solutions of a system where a half-plane in which reaction-diffusion phenomena take place exchanges mass with a line having a large diffusion of its own. The system was proposed by H. Berestycki, L. Rossi and the second author as a model of enhancement of biological invasions by a line of fast diffusion. It was observed numerically by A.-C. Coulon that the leading edge of the front, rather than being located on the line, was in the lower half-plane. We explain this behavior for a closely related free boundary problem. We construct travelling waves for this problem, and the analysis of their free boundary near the line confirms the predictions of the numerical simulations.
Keywords: expanding level sets, reaction-diffusion phenomena, line of fast diffusion.
@article{AA_2020_32_3_a6,
     author = {L. A. Caffarelli and J.-M. Roquejoffre},
     title = {The leading edge of a free boundary interacting with a line of fast diffusion},
     journal = {Algebra i analiz},
     pages = {149--179},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a6/}
}
TY  - JOUR
AU  - L. A. Caffarelli
AU  - J.-M. Roquejoffre
TI  - The leading edge of a free boundary interacting with a line of fast diffusion
JO  - Algebra i analiz
PY  - 2020
SP  - 149
EP  - 179
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a6/
LA  - en
ID  - AA_2020_32_3_a6
ER  - 
%0 Journal Article
%A L. A. Caffarelli
%A J.-M. Roquejoffre
%T The leading edge of a free boundary interacting with a line of fast diffusion
%J Algebra i analiz
%D 2020
%P 149-179
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a6/
%G en
%F AA_2020_32_3_a6
L. A. Caffarelli; J.-M. Roquejoffre. The leading edge of a free boundary interacting with a line of fast diffusion. Algebra i analiz, Tome 32 (2020) no. 3, pp. 149-179. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a6/

[1] Alt H. W., Caffarelli L. A., “Existence and regularity for a minimum problem with free boundary”, J. Reine Angew. Math., 325 (1981), 105–144 | MR | Zbl

[2] Berestycki H., Caffarelli L. A., Nirenberg L., “Uniform estimates for the regularization of free boundary problems”, Lecture Notes in Pure Appl. Math., 122, Dekker, New York, 1990, 567–619 | MR

[3] Berestycki H., Nicoalenko B., Scheurer B., “Traveling wave solutions to combustion models and their singular limits”, SIAM J. Math. Anal., 16:6 (1985), 1207–1242 | DOI | MR | Zbl

[4] Berestycki H., Roquejoffre J.-M., Rossi L., “The influence of a line with fast diffusion on Fisher-KPP propagation”, J. Math. Biol., 66:4-5 (2013), 743–766 | DOI | MR | Zbl

[5] Berestycki H., Roquejoffre J.-M., Rossi L., “The shape of expansion induced by a line with fast diffusion in Fisher-KPP equations”, Comm. Math. Phys., 343:1 (2016), 207–232 | DOI | MR | Zbl

[6] Caffarelli L. A., Salsa S., A geometric approach to free boundary problems, Grad. Stud. in Math., 68, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[7] Caffarelli L. A., Vazquez J.-L., “A free boundary problem for the heat equation arising in flame propagation”, Trans. Amer. Math. Soc., 347:2 (1995), 411–442 | DOI | MR

[8] Coulon Chalmin A.-C., Fast propagation in reaction-diffusion equations with fractional diffusion, PhD thesis, 2014 thesesups.ups-tlse.fr/2427/

[9] Dietrich L., “Existence of travelling waves for a reaction-diffusion system with a line of fast diffusion”, Appl. Math. Res. Express. AMRX, 2015, no. 2, 204–252 | DOI | MR | Zbl

[10] Dietrich L., Roquejoffre J.-M., “Front propagation directed by a line of fast diffusion: large diffusion and large time asymptotics”, J. Éc. Polytech. Math., 4 (2017), 141–176 | DOI | MR | Zbl

[11] Jerison D., Kamburov N., “Free boundaries subject to topological constraints”, Discrete Contin. Dyn. Syst., 39:12 (2019), 7213–7248 | DOI | MR | Zbl

[12] Luo Y., Trudinger N. S., “Linear second order elliptic equations with Venttsel boundary conditions”, Proc. Roy. Soc. Edinburg Sect. A, 118:3-4 (1991), 193–270 | DOI | MR

[13] Sivashinsky G. I., “Instabilities, pattern formation and turbulence in flames”, Ann. Rev. Fluid Mech., 15 (1983), 179–199 | DOI | Zbl

[14] Zeldovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M., Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980 | MR