Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a3, author = {A. Azevedo and J.-F. Rodrigues and L. Santos}, title = {Lagrange multipliers for evolution problems with constraints on the derivatives}, journal = {Algebra i analiz}, pages = {65--83}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a3/} }
TY - JOUR AU - A. Azevedo AU - J.-F. Rodrigues AU - L. Santos TI - Lagrange multipliers for evolution problems with constraints on the derivatives JO - Algebra i analiz PY - 2020 SP - 65 EP - 83 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a3/ LA - en ID - AA_2020_32_3_a3 ER -
A. Azevedo; J.-F. Rodrigues; L. Santos. Lagrange multipliers for evolution problems with constraints on the derivatives. Algebra i analiz, Tome 32 (2020) no. 3, pp. 65-83. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a3/
[1] Azevedo A., Santos L., “Lagrange multipliers and transport densities”, J. Math. Pures Appl. (9), 108:4 (2017), 592–611 | DOI | MR | Zbl
[2] Brézis H., Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, North-Holland Publ. Co., 1973 | MR
[3] Capogna L., Danielli D., Garofalo N., “Subelliptic mollifiers and a characterization of Rellich and Poincaré domains”, Rend. Sem. Mat. Univ. Politec. Torino, 51:4 (1993), 361–386 | MR | Zbl
[4] Dautray R., Lions J.-L., Mathematical analysis and numerical methods for science and technology, v. 3, Spectral theory and applications, Springer-Verlag, Berlin, 1990 | MR
[5] Derridj M., Dias J. P., “Le problème de Dirichlet pour une class d'opérateurs nonlinéaires”, J. Math. Pures Appl. (9), 51 (1972), 219–230 | MR | Zbl
[6] Hajł{l}asz P., Koskela P., “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 145, no. 688, 2000, 1–101 | MR
[7] Gerhardt C., “On the existence and uniqueness of a warpening function in the elastic-plastic torsion of a cylindrical bar with multiply connected cross-section”, Applications of methods of functional analysis to problems in mechanics, Joint Sympos., IUTAM/IMU (Marseille, 1975), Lecture Notes in Math., 503, Springer, Berlin, 1976, 328–342 | DOI | MR
[8] Igbida N., “Evolution Monge–Kantorovich equation”, J. Differential Equations, 255:7 (2013), 1383–1407 | DOI | MR | Zbl
[9] Miranda F., Rodrigues J.-F., Santos L., “On a $p$-curl system arising in electromagnetism”, Discrete Contin. Dyn. Syst. Ser. S, 5:3 (2012), 605–629 | MR | Zbl
[10] Miranda F., Rodrigues J.-F., Santos L., “Evolutionary quasi-variational and variational inequalities with constraints on the derivatives”, Adv. Nonlinear Anal., 9:1 (2020), 250–277 | DOI | MR | Zbl
[11] Prigozhin L. B., “Kvazivariatsionnoe neravenstvo v zadache o forme nasypi”, Zh. vychisl. mat. i mat. fiz., 26:7 (1986), 1072–1080 ; Prigozhin L., “Variational model of sandpile growth”, European J. Appl. Math., 7 (1996), 225–235 | MR | DOI | MR | Zbl
[12] Prigozhin L., “On the Bean critical state model in superconductivity”, European J. Appl. Math., 7:3 (1996), 237–247 | DOI | MR | Zbl
[13] Rodrigues J.-F., “On the mathematical analysis of thick fluids”, Zap. nauch. semin. POMI, 425, 2014, 117–136 | MR
[14] Rodrigues J.-F., Santos L., “Variational and quasi-variational inequalities with gradient type constraints”, Topics in Applied Analysis and Optimisation, Proc. of the CIM-WIAS Workshop, CIM-Springer Series, 2019, 319–362, arXiv: 1809.02059 | MR
[15] Roubíček T., Nonlinear partial differential equations with applications, Intern. Ser. Numer. Math., 153, 2nd ed., Birkhauser, Basel, 2013 | MR | Zbl
[16] Santos L., “A diffusion problem with gradient constraint and evolutive Dirichlet condition”, Portugal. Math., 48:4 (1991), 441–468 | MR | Zbl
[17] Santos L., “Variational problems with non-constant gradient constraints”, Port. Math. (N.S.), 59:2 (2002), 205–248 | MR | Zbl
[18] Yosida K., Functional analysis, Grundlehren Math. Wiss., 123, 6th ed., Springer-Verlag, Berlin, 1980 | MR | Zbl