Lagrange multipliers for evolution problems with constraints on the derivatives
Algebra i analiz, Tome 32 (2020) no. 3, pp. 65-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type.
Keywords: variational inequalities, sandpile problem, superconductivity problems, flows of thick fluids, problems with the biharmonic operator, first order vector fields of subelliptic type.
@article{AA_2020_32_3_a3,
     author = {A. Azevedo and J.-F. Rodrigues and L. Santos},
     title = {Lagrange multipliers for evolution problems with constraints on the derivatives},
     journal = {Algebra i analiz},
     pages = {65--83},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a3/}
}
TY  - JOUR
AU  - A. Azevedo
AU  - J.-F. Rodrigues
AU  - L. Santos
TI  - Lagrange multipliers for evolution problems with constraints on the derivatives
JO  - Algebra i analiz
PY  - 2020
SP  - 65
EP  - 83
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a3/
LA  - en
ID  - AA_2020_32_3_a3
ER  - 
%0 Journal Article
%A A. Azevedo
%A J.-F. Rodrigues
%A L. Santos
%T Lagrange multipliers for evolution problems with constraints on the derivatives
%J Algebra i analiz
%D 2020
%P 65-83
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a3/
%G en
%F AA_2020_32_3_a3
A. Azevedo; J.-F. Rodrigues; L. Santos. Lagrange multipliers for evolution problems with constraints on the derivatives. Algebra i analiz, Tome 32 (2020) no. 3, pp. 65-83. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a3/

[1] Azevedo A., Santos L., “Lagrange multipliers and transport densities”, J. Math. Pures Appl. (9), 108:4 (2017), 592–611 | DOI | MR | Zbl

[2] Brézis H., Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, North-Holland Publ. Co., 1973 | MR

[3] Capogna L., Danielli D., Garofalo N., “Subelliptic mollifiers and a characterization of Rellich and Poincaré domains”, Rend. Sem. Mat. Univ. Politec. Torino, 51:4 (1993), 361–386 | MR | Zbl

[4] Dautray R., Lions J.-L., Mathematical analysis and numerical methods for science and technology, v. 3, Spectral theory and applications, Springer-Verlag, Berlin, 1990 | MR

[5] Derridj M., Dias J. P., “Le problème de Dirichlet pour une class d'opérateurs nonlinéaires”, J. Math. Pures Appl. (9), 51 (1972), 219–230 | MR | Zbl

[6] Hajł{l}asz P., Koskela P., “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 145, no. 688, 2000, 1–101 | MR

[7] Gerhardt C., “On the existence and uniqueness of a warpening function in the elastic-plastic torsion of a cylindrical bar with multiply connected cross-section”, Applications of methods of functional analysis to problems in mechanics, Joint Sympos., IUTAM/IMU (Marseille, 1975), Lecture Notes in Math., 503, Springer, Berlin, 1976, 328–342 | DOI | MR

[8] Igbida N., “Evolution Monge–Kantorovich equation”, J. Differential Equations, 255:7 (2013), 1383–1407 | DOI | MR | Zbl

[9] Miranda F., Rodrigues J.-F., Santos L., “On a $p$-curl system arising in electromagnetism”, Discrete Contin. Dyn. Syst. Ser. S, 5:3 (2012), 605–629 | MR | Zbl

[10] Miranda F., Rodrigues J.-F., Santos L., “Evolutionary quasi-variational and variational inequalities with constraints on the derivatives”, Adv. Nonlinear Anal., 9:1 (2020), 250–277 | DOI | MR | Zbl

[11] Prigozhin L. B., “Kvazivariatsionnoe neravenstvo v zadache o forme nasypi”, Zh. vychisl. mat. i mat. fiz., 26:7 (1986), 1072–1080 ; Prigozhin L., “Variational model of sandpile growth”, European J. Appl. Math., 7 (1996), 225–235 | MR | DOI | MR | Zbl

[12] Prigozhin L., “On the Bean critical state model in superconductivity”, European J. Appl. Math., 7:3 (1996), 237–247 | DOI | MR | Zbl

[13] Rodrigues J.-F., “On the mathematical analysis of thick fluids”, Zap. nauch. semin. POMI, 425, 2014, 117–136 | MR

[14] Rodrigues J.-F., Santos L., “Variational and quasi-variational inequalities with gradient type constraints”, Topics in Applied Analysis and Optimisation, Proc. of the CIM-WIAS Workshop, CIM-Springer Series, 2019, 319–362, arXiv: 1809.02059 | MR

[15] Roubíček T., Nonlinear partial differential equations with applications, Intern. Ser. Numer. Math., 153, 2nd ed., Birkhauser, Basel, 2013 | MR | Zbl

[16] Santos L., “A diffusion problem with gradient constraint and evolutive Dirichlet condition”, Portugal. Math., 48:4 (1991), 441–468 | MR | Zbl

[17] Santos L., “Variational problems with non-constant gradient constraints”, Port. Math. (N.S.), 59:2 (2002), 205–248 | MR | Zbl

[18] Yosida K., Functional analysis, Grundlehren Math. Wiss., 123, 6th ed., Springer-Verlag, Berlin, 1980 | MR | Zbl