Almost everywhere regularity for the free boundary of the $p$-harmonic obstacle problem $p>2$
Algebra i analiz, Tome 32 (2020) no. 3, pp. 39-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$ be a solution to the normalized $p$-harmonic obstacle problem with $p>2$. That is, $u\in W^{1,p}(B_1(0))$, $2$, $u\ge 0$ and $$ \mathrm{div}\,( |\nabla u|^{p-2}\nabla u)=\chi_{\{u>0\}}\textrm{ in }B_1(0) $$ where $u(x)\ge 0$ and $\chi_A$ is the characteristic function of the set $A$. The main result is that for almost every free boundary point with respect to the $(n-1)$-Hausdorff measure, there is a neighborhood where the free boundary is a $C^{1,\beta}$-graph. That is, for $\mathcal{H}^{n-1}$-a.e. point $x^0\in \partial \{u>0\}\cap B_1(0)$ there is an $r>0$ such that $B_r(x^0)\cap \partial \{u>0\}\in C^{1,\beta}$.
Keywords: $p$-Laplace operator, blow-up, Carleson measure Hausdorff measure.
@article{AA_2020_32_3_a2,
     author = {J. Andersson},
     title = {Almost everywhere regularity for the free boundary of the $p$-harmonic obstacle problem $p>2$},
     journal = {Algebra i analiz},
     pages = {39--64},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a2/}
}
TY  - JOUR
AU  - J. Andersson
TI  - Almost everywhere regularity for the free boundary of the $p$-harmonic obstacle problem $p>2$
JO  - Algebra i analiz
PY  - 2020
SP  - 39
EP  - 64
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a2/
LA  - en
ID  - AA_2020_32_3_a2
ER  - 
%0 Journal Article
%A J. Andersson
%T Almost everywhere regularity for the free boundary of the $p$-harmonic obstacle problem $p>2$
%J Algebra i analiz
%D 2020
%P 39-64
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a2/
%G en
%F AA_2020_32_3_a2
J. Andersson. Almost everywhere regularity for the free boundary of the $p$-harmonic obstacle problem $p>2$. Algebra i analiz, Tome 32 (2020) no. 3, pp. 39-64. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a2/

[1] Andersson J., Mikayelyan H., “The zero level set for a certain weak solution, with applications to the Bellman equations”, Trans. Amer. Math. Soc., 365:5 (2013), 2297–2316 | DOI | MR | Zbl

[2] Caffarelli L. A., “The obstacle problem revisited”, J. Fourier Anal. Appl., 4:4-5 (1998), 383–402 | DOI | MR | Zbl

[3] Choe Hi Jun, Lewis J. L., “On the obstacle problem for quasilinear elliptic equations of $p$ Laplacian type”, SIAM J. Math. Anal., 22:3 (1991), 623–638 | DOI | MR | Zbl

[4] Giusti E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80, Birkhäuser Verlag, Basel, 1984 | MR | Zbl

[5] Karp L., Kilpeläinen T., Petrosyan A., Shahgholian H., “On the porosity of free boundaries in degenerate variational inequalities”, J. Differential Equations, 164:1 (2000), 110–117 | DOI | MR | Zbl

[6] Lee K., Shahgholian H., “Hausdorff measure and stability for the $p$-obstacle problem $(2

\infty)$”, J. Differential Equations, 195:1 (2003), 14–24 | DOI | MR | Zbl

[7] Zhao Peihao, Zheng Jun, “Remarks on Hausdorff measure and stability for the $p$-obstacle problem $(1

2)$”, Proc. Indian Acad. Sci. Math. Sci., 122:1 (2012), 129–137 | DOI | MR | Zbl

[8] Evans L. C., Partial differential equations, Grad. Stud. in Math., 19, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[9] Challal S., Lyaghfouri A., Rodrigues J. F., “On the $A$-obstacle problem and the Hausdorff measure of its free boundary”, Ann. Mat. Pura Appl. (4), 191:1 (2012), 113–165 | DOI | MR | Zbl

[10] Andersson J., Shahgholian H., Weiss G. S., Linearization techniques in free boundary problems, In preparation

[11] Choe Hi Jun, Lewis J. L., “On the obstacle problem for quasilinear elliptic equations of $p$-Laplacian type”, SIAM J. Math. Anal., 22:3 (1991), 623–638 | DOI | MR | Zbl

[12] David G., Semmes S., “On the singular sets of minimizers of the Mumford–Shah functional”, J. Math. Pures Appl. (9), 75:4 (1996), 299–342 | MR | Zbl

[13] De Lellis C., Rectifiable sets, densities and tangent measures, Zur. Lect. Adv. Math., European Math. Soc. (EMS), Zürich, 2008 | MR | Zbl