Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a2, author = {J. Andersson}, title = {Almost everywhere regularity for the free boundary of the $p$-harmonic obstacle problem $p>2$}, journal = {Algebra i analiz}, pages = {39--64}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a2/} }
J. Andersson. Almost everywhere regularity for the free boundary of the $p$-harmonic obstacle problem $p>2$. Algebra i analiz, Tome 32 (2020) no. 3, pp. 39-64. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a2/
[1] Andersson J., Mikayelyan H., “The zero level set for a certain weak solution, with applications to the Bellman equations”, Trans. Amer. Math. Soc., 365:5 (2013), 2297–2316 | DOI | MR | Zbl
[2] Caffarelli L. A., “The obstacle problem revisited”, J. Fourier Anal. Appl., 4:4-5 (1998), 383–402 | DOI | MR | Zbl
[3] Choe Hi Jun, Lewis J. L., “On the obstacle problem for quasilinear elliptic equations of $p$ Laplacian type”, SIAM J. Math. Anal., 22:3 (1991), 623–638 | DOI | MR | Zbl
[4] Giusti E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80, Birkhäuser Verlag, Basel, 1984 | MR | Zbl
[5] Karp L., Kilpeläinen T., Petrosyan A., Shahgholian H., “On the porosity of free boundaries in degenerate variational inequalities”, J. Differential Equations, 164:1 (2000), 110–117 | DOI | MR | Zbl
[6] Lee K., Shahgholian H., “Hausdorff measure and stability for the $p$-obstacle problem $(2
\infty)$”, J. Differential Equations, 195:1 (2003), 14–24 | DOI | MR | Zbl[7] Zhao Peihao, Zheng Jun, “Remarks on Hausdorff measure and stability for the $p$-obstacle problem $(1
2)$”, Proc. Indian Acad. Sci. Math. Sci., 122:1 (2012), 129–137 | DOI | MR | Zbl[8] Evans L. C., Partial differential equations, Grad. Stud. in Math., 19, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[9] Challal S., Lyaghfouri A., Rodrigues J. F., “On the $A$-obstacle problem and the Hausdorff measure of its free boundary”, Ann. Mat. Pura Appl. (4), 191:1 (2012), 113–165 | DOI | MR | Zbl
[10] Andersson J., Shahgholian H., Weiss G. S., Linearization techniques in free boundary problems, In preparation
[11] Choe Hi Jun, Lewis J. L., “On the obstacle problem for quasilinear elliptic equations of $p$-Laplacian type”, SIAM J. Math. Anal., 22:3 (1991), 623–638 | DOI | MR | Zbl
[12] David G., Semmes S., “On the singular sets of minimizers of the Mumford–Shah functional”, J. Math. Pures Appl. (9), 75:4 (1996), 299–342 | MR | Zbl
[13] De Lellis C., Rectifiable sets, densities and tangent measures, Zur. Lect. Adv. Math., European Math. Soc. (EMS), Zürich, 2008 | MR | Zbl