A note on weak solutions to the Navier--Stokes equations that are locally in $L_\infty(L^{3,\infty})$
Algebra i analiz, Tome 32 (2020) no. 3, pp. 238-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of the note is to prove a regularity result for weak solutions to the Navier–Stokes equations that are locally in $L_\infty(L^{3,\infty})$. It reads that, in a sense, the number of singular points at each time is at most finite. This note is inspired by a recent paper of H. J. Choe, J. Wolf, M. Yang.
Keywords: suitable weak solution, singular points, local regularity up to flat part of boundary.
@article{AA_2020_32_3_a10,
     author = {G. Seregin},
     title = {A note on weak solutions to the {Navier--Stokes} equations that are locally in $L_\infty(L^{3,\infty})$},
     journal = {Algebra i analiz},
     pages = {238--253},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a10/}
}
TY  - JOUR
AU  - G. Seregin
TI  - A note on weak solutions to the Navier--Stokes equations that are locally in $L_\infty(L^{3,\infty})$
JO  - Algebra i analiz
PY  - 2020
SP  - 238
EP  - 253
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a10/
LA  - en
ID  - AA_2020_32_3_a10
ER  - 
%0 Journal Article
%A G. Seregin
%T A note on weak solutions to the Navier--Stokes equations that are locally in $L_\infty(L^{3,\infty})$
%J Algebra i analiz
%D 2020
%P 238-253
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_3_a10/
%G en
%F AA_2020_32_3_a10
G. Seregin. A note on weak solutions to the Navier--Stokes equations that are locally in $L_\infty(L^{3,\infty})$. Algebra i analiz, Tome 32 (2020) no. 3, pp. 238-253. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a10/

[1] Choe H. J., Wolf J., Yang M., On regularity and singularity for $L^{\infty}(0,T;L^{3,w}(\mathbb R^3))$ solutions to the Navier–Stokes equations, 15 Nov 2016, arXiv: 5v1 [math.AP] | MR

[2] Caffarelli L., Kohn R.-V., Nirenberg L., “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl

[3] Iskauriaza L., Seregin G. A., Shverak V., “$L_{3,\infty}$-resheniya uravnenii Nave-Stoksa i obratnaya edinstvennost”, Uspekhi mat. nauk, 58:2 (2003), 3–44 | DOI | MR

[4] Lin F.-H., “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Ladyzhenskaya O., Seregin G., “Partial regularity for suitable weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 1:4 (1999), 356–387 | DOI | MR | Zbl

[6] Seregin G., “On the number of singular points of weak solutions to the Navier–Stokes equations”, Comm. Pure Appl. Math., 54:8 (2001), 1019–1028 | DOI | MR | Zbl

[7] Seregin G., “Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces”, Zap. nauch. semin. POMI, 336, 2006, 199–210 | MR | Zbl

[8] Seregin G., “A note on local boundary regularity for the Stokes system”, Zap. nauch. semin. POMI, 370, 2009, 151–159 | MR

[9] Seregin G., “Remark on Wolf's condition for boundary regularity of Navier–Stokes equations”, Zap. nauch. semin. POMI, 444, 2016, 124–132 | MR

[10] Shilkin T., Vialov V., “Estimates of solutions to the perturbed Stokes system”, Zap. nauch. semin. POMI, 410, 2013, 5–24 | MR | Zbl