Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_3_a10, author = {G. Seregin}, title = {A note on weak solutions to the {Navier--Stokes} equations that are locally in $L_\infty(L^{3,\infty})$}, journal = {Algebra i analiz}, pages = {238--253}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_3_a10/} }
TY - JOUR AU - G. Seregin TI - A note on weak solutions to the Navier--Stokes equations that are locally in $L_\infty(L^{3,\infty})$ JO - Algebra i analiz PY - 2020 SP - 238 EP - 253 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_3_a10/ LA - en ID - AA_2020_32_3_a10 ER -
G. Seregin. A note on weak solutions to the Navier--Stokes equations that are locally in $L_\infty(L^{3,\infty})$. Algebra i analiz, Tome 32 (2020) no. 3, pp. 238-253. http://geodesic.mathdoc.fr/item/AA_2020_32_3_a10/
[1] Choe H. J., Wolf J., Yang M., On regularity and singularity for $L^{\infty}(0,T;L^{3,w}(\mathbb R^3))$ solutions to the Navier–Stokes equations, 15 Nov 2016, arXiv: 5v1 [math.AP] | MR
[2] Caffarelli L., Kohn R.-V., Nirenberg L., “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl
[3] Iskauriaza L., Seregin G. A., Shverak V., “$L_{3,\infty}$-resheniya uravnenii Nave-Stoksa i obratnaya edinstvennost”, Uspekhi mat. nauk, 58:2 (2003), 3–44 | DOI | MR
[4] Lin F.-H., “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] Ladyzhenskaya O., Seregin G., “Partial regularity for suitable weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 1:4 (1999), 356–387 | DOI | MR | Zbl
[6] Seregin G., “On the number of singular points of weak solutions to the Navier–Stokes equations”, Comm. Pure Appl. Math., 54:8 (2001), 1019–1028 | DOI | MR | Zbl
[7] Seregin G., “Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces”, Zap. nauch. semin. POMI, 336, 2006, 199–210 | MR | Zbl
[8] Seregin G., “A note on local boundary regularity for the Stokes system”, Zap. nauch. semin. POMI, 370, 2009, 151–159 | MR
[9] Seregin G., “Remark on Wolf's condition for boundary regularity of Navier–Stokes equations”, Zap. nauch. semin. POMI, 444, 2016, 124–132 | MR
[10] Shilkin T., Vialov V., “Estimates of solutions to the perturbed Stokes system”, Zap. nauch. semin. POMI, 410, 2013, 5–24 | MR | Zbl