Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_2_a7, author = {N. Filonov and P. A. Khodunov}, title = {Nonuniqueness of {Leray-Hopf} solutions for a dyadic model}, journal = {Algebra i analiz}, pages = {229--253}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a7/} }
N. Filonov; P. A. Khodunov. Nonuniqueness of Leray-Hopf solutions for a dyadic model. Algebra i analiz, Tome 32 (2020) no. 2, pp. 229-253. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a7/
[1] Barbato D., Morandin F., Romito M., “Smooth solutions for the dyadic model”, Nonlinearity, 24:11 (2011), 3083–3097 | DOI | MR | Zbl
[2] Cheskidov A., “Blow-up in finite time for the dyadic model of the Navier–Stokes equations”, Trans. Amer. Math. Soc., 360:10 (2008), 5101–5120 | DOI | MR | Zbl
[3] Desnyanskii V. N., Novikov E. A., “Modelirovanie kaskadnykh protsessov v turbulentnykh techeniyakh”, Prikl. mat. mekh., 38 (1974), 507–513
[4] Filonov N. D., “Uniqueness of the Leray–Hopf solution for a dyadic model”, Trans. Amer. Math. Soc., 369:12 (2017), 8663–8684 | DOI | MR | Zbl
[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[6] Katz N. H., Pavlović N., “A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyper-dissipation”, Geom. Funct. Anal., 12:2 (2002), 355–379 | DOI | MR | Zbl
[7] Kiselev A., Zlatoš A., “On discrete models of the Euler equation”, Int. Math. Res. Not. IMRN, 38 (2005), 2315–2339 | DOI | MR | Zbl
[8] Massera Kh., Sheffer Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970
[9] Tao T., “Finite time blowup for an averaged three-dimensional Navier–Stokes equation”, J. Amer. Math. Soc., 29:3 (2016), 601–674 | DOI | MR | Zbl
[10] Waleffe F., “On some dyadic models of the Euler equations”, Proc. Amer. Math. Soc., 134:10 (2006), 2913–2922 | DOI | MR | Zbl