Nonuniqueness of Leray-Hopf solutions for a dyadic model
Algebra i analiz, Tome 32 (2020) no. 2, pp. 229-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dyadic model $ \dot u_n + \lambda ^{2n}u_n - \lambda ^{\beta n}u_{n-1}^2 + \lambda ^{\beta (n+1)}u_nu_{n+1} = f_n$, $ u_n(0)=0$, is considered. It is shown that in the case of nontrivial right-hand side the system may have two different Leray-Hopf solutions.
Keywords: systems of ordinary differential equations, Navier–Stokes equations, dyadic model, nonuniqueness of solutions.
@article{AA_2020_32_2_a7,
     author = {N. Filonov and P. A. Khodunov},
     title = {Nonuniqueness of {Leray-Hopf} solutions for a dyadic model},
     journal = {Algebra i analiz},
     pages = {229--253},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a7/}
}
TY  - JOUR
AU  - N. Filonov
AU  - P. A. Khodunov
TI  - Nonuniqueness of Leray-Hopf solutions for a dyadic model
JO  - Algebra i analiz
PY  - 2020
SP  - 229
EP  - 253
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_2_a7/
LA  - ru
ID  - AA_2020_32_2_a7
ER  - 
%0 Journal Article
%A N. Filonov
%A P. A. Khodunov
%T Nonuniqueness of Leray-Hopf solutions for a dyadic model
%J Algebra i analiz
%D 2020
%P 229-253
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_2_a7/
%G ru
%F AA_2020_32_2_a7
N. Filonov; P. A. Khodunov. Nonuniqueness of Leray-Hopf solutions for a dyadic model. Algebra i analiz, Tome 32 (2020) no. 2, pp. 229-253. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a7/

[1] Barbato D., Morandin F., Romito M., “Smooth solutions for the dyadic model”, Nonlinearity, 24:11 (2011), 3083–3097 | DOI | MR | Zbl

[2] Cheskidov A., “Blow-up in finite time for the dyadic model of the Navier–Stokes equations”, Trans. Amer. Math. Soc., 360:10 (2008), 5101–5120 | DOI | MR | Zbl

[3] Desnyanskii V. N., Novikov E. A., “Modelirovanie kaskadnykh protsessov v turbulentnykh techeniyakh”, Prikl. mat. mekh., 38 (1974), 507–513

[4] Filonov N. D., “Uniqueness of the Leray–Hopf solution for a dyadic model”, Trans. Amer. Math. Soc., 369:12 (2017), 8663–8684 | DOI | MR | Zbl

[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[6] Katz N. H., Pavlović N., “A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyper-dissipation”, Geom. Funct. Anal., 12:2 (2002), 355–379 | DOI | MR | Zbl

[7] Kiselev A., Zlatoš A., “On discrete models of the Euler equation”, Int. Math. Res. Not. IMRN, 38 (2005), 2315–2339 | DOI | MR | Zbl

[8] Massera Kh., Sheffer Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970

[9] Tao T., “Finite time blowup for an averaged three-dimensional Navier–Stokes equation”, J. Amer. Math. Soc., 29:3 (2016), 601–674 | DOI | MR | Zbl

[10] Waleffe F., “On some dyadic models of the Euler equations”, Proc. Amer. Math. Soc., 134:10 (2006), 2913–2922 | DOI | MR | Zbl