Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_2_a6, author = {A. Yu. Ulitskaya}, title = {Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts}, journal = {Algebra i analiz}, pages = {201--228}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a6/} }
TY - JOUR AU - A. Yu. Ulitskaya TI - Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts JO - Algebra i analiz PY - 2020 SP - 201 EP - 228 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_2_a6/ LA - ru ID - AA_2020_32_2_a6 ER -
A. Yu. Ulitskaya. Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts. Algebra i analiz, Tome 32 (2020) no. 2, pp. 201-228. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a6/
[1] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR
[2] Sun Yunshen, Li Chun, “Nailuchshee priblizhenie nekotorykh klassov gladkikh funktsii na deistvitelnoi osi splainami vysshego poryadka”, Mat. zametki, 48:4 (1990), 100–109 | Zbl
[3] Vinogradov O. L., Ulitskaya A. Yu., “Tochnye otsenki srednekvadratichnykh priblizhenii klassov differentsiruemykh periodicheskikh funktsii prostranstvami sdvigov”, Vestn. Sankt-Peterburg. un-ta. Ser. mat., mekh., astronom., 2018, no. 1, 22–31
[4] A. Pinkus, “$n$-widths in approximation theory”, Ergeb. Math. Grenzgeb. (3), 7 (1985), Springer-Verlag, Berlin | MR | Zbl
[5] Schoenberg I. J., Cardinal spline interpolation, Conf. Board Math. Sci. Reg. Conf. Ser. Appl. Math., 12, 2nd ed., Soc. Industr. Appl. Math., Philadelphia, Pa, 1993 | MR
[6] Golomb M., “Approximation by periodic spline interpolants on uniform meshes”, J. Approx. Theory, 1 (1968), 26–65 | DOI | MR | Zbl
[7] Kamada M., Toriachi K., Mori R., “Periodic spline orthonormal bases”, J. Approx. Theory, 55 (1988), 27–34 | DOI | MR | Zbl
[8] Vinogradov O. L., “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Probl. mat. anal., 25 (2003), 29–56 | Zbl
[9] Vinogradov O. L., “Tochnye neravenstva dlya priblizhenii klassov periodicheskikh svertok prostranstvami sdvigov nechetnoi razmernosti”, Mat. zametki, 85:4 (2009), 569–584 | DOI | MR | Zbl
[10] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948