Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions
Algebra i analiz, Tome 32 (2020) no. 2, pp. 143-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two Kirchhoff plates, which are described by Neumann problems for biharmonic equations, overlap along a thin strip. In the interior of the strip, the plates are connected by rivets, which are modeled by the Sobolev point transmission conditions. By taking the boundary layer phenomenon into account, homogenization with respect to a small parameter (the relative period of the distribution of rivets) is done, and transmission conditions are obtained on the common edge of two touching plates (in the limiting case, overlapping disappears). Differences are found between a single row and multiple row riveting that appear in different types of limiting transmission conditions, and the reasons are shown for the preference of double row riveting in practical engineering. Several related unsolved problems are formulated.
Keywords: biharmonic equation, Kirchhoff plate, Sobolev point conditions, rivet model, homogenization, boundary layer.
@article{AA_2020_32_2_a5,
     author = {S. A. Nazarov},
     title = {Homogenization of {Kirchhoff} plates joined by rivets which are modeled by the {Sobolev} point conditions},
     journal = {Algebra i analiz},
     pages = {143--200},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions
JO  - Algebra i analiz
PY  - 2020
SP  - 143
EP  - 200
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_2_a5/
LA  - ru
ID  - AA_2020_32_2_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions
%J Algebra i analiz
%D 2020
%P 143-200
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_2_a5/
%G ru
%F AA_2020_32_2_a5
S. A. Nazarov. Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions. Algebra i analiz, Tome 32 (2020) no. 2, pp. 143-200. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a5/

[1] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR

[2] Birman M. Sh., “O variatsionnom metode Trefftsa dlya uravneniya $\Delta^2u=f$”, Dokl. AN SSSR, 101:2 (1955), 201–204 | MR | Zbl

[3] Buttatstso Dzh., Nazarov S. A., “Zadacha optimizatsii dlya bigarmonicheskogo uravneniya s usloviyami Soboleva”, Probl. mat. anal., 58 (2011), 69–78

[4] Buttazzo G., Cardone G., Nazarov S. A., “Thin elastic plates supported over small areas. II. Variational-asymptotic models”, J. Convex Anal., 24:3 (2017), 819–855 | MR | Zbl

[5] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[6] Anurev V. I., Spravochnik kontruktora-mashinostroitelya, v. 3, 8-e izd., pererab. i dop., Mashinostroenie, M., 2001

[7] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. mat. anal., 16 (1997), 167–192 | Zbl

[8] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl

[9] Van Daik M. D., Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967

[10] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[11] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[12] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–292 | Zbl

[13] Panasenko G. P., “Asimptotiki vysshikh poryadkov reshenii zadach o kontakte periodicheskikh struktur”, Mat. sb., 110:4 (1979), 505–538 | MR | Zbl

[14] Sanchez-Palencia E., “Un problèeme d'ecoulement lent d'un uide incompressible au travers d'une paroi finement perforéee”, Homogenization Methods: Theory and Applications in Physics, Collect. Dir. Études Rech. Élec. France, 57, Eyrolles, Paris, 1985, 371–400 | MR

[15] Nazarov S. A., “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izv. RAN. Ser. mat., 72:3 (2008), 103–158 | DOI | MR | Zbl

[16] Nazarov S. A., Perez M. E., “On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary”, Rev. Mat. Complut., 31:1 (2018), 1–62 | DOI | MR | Zbl

[17] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expos. Math., 13, Walter de Gruyter, Berlin–New York, 1994 | MR

[18] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[19] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Tr. Leningrad. mat. o-va, 1 (1990), 174–211

[20] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82

[21] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya s bystro ostsilliruyuschimi koeffitsientami v pryamougolnike”, Mat. sb., 182:5 (1991), 692–722

[22] Nazarov S. A., Slutskii A. S., “Asimptotika reshenii kraevykh zadach dlya uravneniya s bystroostsilliruyuschimi koeffitsientami v oblasti s maloi polostyu”, Mat. sb., 189:9 (1998), 107–142 | DOI | MR | Zbl

[23] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle v uglovoi oblasti s periodicheski izmenyayuscheisya granitsei”, Mat. zametki, 49:5 (1991), 86–96 | MR | Zbl

[24] Nazarov S. A., “Zadacha Neimana v uglovykh oblastyakh s periodicheskimi i parabolicheskimi vozmuscheniyami granitsy”, Tr. Mosk. mat. o-va, 69, 2007, 183–243