Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts
Algebra i analiz, Tome 32 (2020) no. 2, pp. 45-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ \sigma >0$, and let $ G,B\in L(\mathbb{R})$. The paper is devoted to approximation of classes of functions  $ f$ for every $ \varepsilon >0$ representable as $\displaystyle f(x)=F_{\varepsilon }(x)+ \frac {1}{2\pi }\int _{\mathbb{R}}\varphi (t)G_{\varepsilon }(x-t) dt,$     where $ F_{\varepsilon }$ is an entire function of type not exceeding  $ \varepsilon $, $ G_{\varepsilon }\in L(\mathbb{R})$, and $ \varphi \in L_p(\mathbb{R})$. The approximating space  $ \mathbf S_B$ consists of functions of the form $\displaystyle s(x)=\sum _{j\in \mathbb{Z}}\beta _jB\Big (x-\frac {j\pi }{\sigma }\Big ).$     Under some conditions on $ G=\{G_{\varepsilon }\}$ and  $ B$, linear operators $ {\mathcal X}_{\sigma ,G,B}$ with values in  $ \mathbf S_B$ are constructed for which $ \Vert f-{\mathcal X}_{\sigma ,G,B}(f)\Vert _p\leq {\mathcal K}_{\sigma ,G}\Vert\varphi \Vert _p$. For $ p=1,\infty $ the constant $ {\mathcal K}_{\sigma ,G}$ (it is an analog of the well-known Favard constant) cannot be reduced, even if one replaces the left-hand side by the best approximation by the space  $ \mathbf S_B$. The results of the paper generalize classical inequalities for approximations by entire functions of exponential type and by splines.
Keywords: spaces of shifts, sharp constants, convolution, Akhiezer–Kreĭn–Favard type inequalities.
@article{AA_2020_32_2_a2,
     author = {O. L. Vinogradov},
     title = {Classes of convolutions with a singular family of kernels: {Sharp} constants for approximation by spaces of shifts},
     journal = {Algebra i analiz},
     pages = {45--84},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts
JO  - Algebra i analiz
PY  - 2020
SP  - 45
EP  - 84
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_2_a2/
LA  - ru
ID  - AA_2020_32_2_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts
%J Algebra i analiz
%D 2020
%P 45-84
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_2_a2/
%G ru
%F AA_2020_32_2_a2
O. L. Vinogradov. Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts. Algebra i analiz, Tome 32 (2020) no. 2, pp. 45-84. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a2/

[1] Favard J., “Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynomes trigonométriques”, Bull. de Sci. Math., 61 (1937), 209–224 ; 243–256 | MR

[2] Akhiezer N. I., Krein M. G., “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Dokl. AN SSSR, 15:3 (1937), 107–112

[3] Nikolskii S. M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. mat., 10:3 (1946), 207–256

[4] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[5] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[6] Pinkus A., $N$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[7] Babenko V. F., “Ekstremalnye zadachi teorii priblizheniya i neravenstva dlya perestanovok”, Dokl. AN SSSR, 290:5 (1986), 1033–1036 | MR

[8] Babenko V. F., “Priblizhenie klassov svertok”, Sibirsk. mat. zh., 28:5 (1987), 6–21 | MR | Zbl

[9] Tikhomirov V. M., “Ob ekstremalnykh podprostranstvakh dlya klassov funktsii, zadavaemykh yadrami, ne povyshayuschimi ostsillyatsiyu”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1997, no. 4, 16–19 | Zbl

[10] Ligun A. A., “Inequalities for upper bounds of functionals”, Anal. Math., 2:1 (1976), 11–40 | DOI | MR | Zbl

[11] Vinogradov O. L., “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Probl. mat. anal., 25 (2003), 29–56 | Zbl

[12] Vinogradov O. L., “Tochnye neravenstva dlya priblizhenii klassov svertok periodicheskikh funktsii podprostranstvami sdvigov nechetnoi razmernosti”, Mat. zametki, 85:4 (2009), 569–584 | DOI | MR | Zbl

[13] Krein M. G., “O nailuchshei approksimatsii nepreryvnykh differentsiruemykh funktsii na vsei veschestvennoi osi”, Dokl. AN SSSR, 18:9 (1938), 619–623

[14] Vinogradov O. L., “Tochnye neravenstva tipa Dzheksona dlya priblizhenii klassov svertok tselymi funktsiyami konechnoi stepeni”, Algebra i analiz, 17:4 (2005), 56–111

[15] Vinogradov O. L., “Tochnye neravenstva dlya priblizhenii klassov svertok na osi kak predelnyi sluchai neravenstv dlya periodicheskikh svertok”, Sibirsk. mat. zh., 58:2 (2017), 251–269 | MR | Zbl

[16] Vinogradov O. L., Gladkaya A. V., “Neperiodicheskii splainovyi analog operatorov Akhiezera–Kreina–Favara”, Zap. nauch. semin. POMI, 440, 2015, 8–35 | MR

[17] Vinogradov O. L., “Tochnye konstanty priblizhenii klassov svertok s summiruemym yadrom prostranstvami sdvigov”, Algebra i analiz, 30:5 (2018), 112–148

[18] Buhmann M. D., “Multivariate cardinal interpolation with radial-basis functions”, Constr. Approx., 6:3 (1993), 225–255 | DOI | MR

[19] Ron A., “Introduction to shift-invariant spaces. Linear independence”, Multivariate Approximation and Applications, Cambridge Univ. Press, Cambridge, 2001, 112–151 | DOI | MR | Zbl

[20] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[21] Schoenberg I. J., Cardinal spline interpolation, Conf. Board Math. Sci. Reg. Conf. Ser. Appl. Math., 12, Soc. Industr. Appl. Math., Philadelphia, Pa, 1973 | MR | Zbl

[22] Magaril-Ilyaev G. G., “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Mat. sb., 182:11 (1991), 1635–1656

[23] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011 | MR

[24] Kloos T., “Zeros of the Zak transform of totally positive functions”, J. Fourier Anal. Appl., 21 (2015), 1130–1145 | DOI | MR | Zbl

[25] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977

[26] A. Zigmund, Trigonometricheskie ryady, v. 1, Mir, M., 1965

[27] Karlin S., Total positivity, v. 1, Stanford Univ. Press, Stanford, 1968 | MR | Zbl

[28] Lorenz G. G., DeVore R. A., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR

[29] Jetter K., Riemenschneider S. D., Sivakumar N., “Schoenberg's exponential Euler spline curves”, Proc. Roy. Soc. Edinburgh Sect. A, 118:1-2 (1991), 21–33 | DOI | MR | Zbl

[30] Baxter B. J. C., Sivakumar N., “On shifted cardinal interpolation by Gaussians and multiquadrics”, J. Approx. Theory, 87 (1996), 36–59 | DOI | MR | Zbl

[31] Nguen Tkhi T. Kh., “Teorema Rollya dlya differentsialnykh operatorov i nekotorye ekstremalnye zadachi teorii priblizhenii”, Dokl. AN SSSR, 295:6 (1987), 1313–1318

[32] O. L. Vinogradov, A. Yu. Ulitskaya, “Zeros of the Zak transform of averaged totally positive functions”, J. Approx. Theory, 222 (2017), 55–63 | DOI | MR | Zbl