Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_2_a2, author = {O. L. Vinogradov}, title = {Classes of convolutions with a singular family of kernels: {Sharp} constants for approximation by spaces of shifts}, journal = {Algebra i analiz}, pages = {45--84}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a2/} }
TY - JOUR AU - O. L. Vinogradov TI - Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts JO - Algebra i analiz PY - 2020 SP - 45 EP - 84 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2020_32_2_a2/ LA - ru ID - AA_2020_32_2_a2 ER -
O. L. Vinogradov. Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts. Algebra i analiz, Tome 32 (2020) no. 2, pp. 45-84. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a2/
[1] Favard J., “Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynomes trigonométriques”, Bull. de Sci. Math., 61 (1937), 209–224 ; 243–256 | MR
[2] Akhiezer N. I., Krein M. G., “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Dokl. AN SSSR, 15:3 (1937), 107–112
[3] Nikolskii S. M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. mat., 10:3 (1946), 207–256
[4] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR
[5] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[6] Pinkus A., $N$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl
[7] Babenko V. F., “Ekstremalnye zadachi teorii priblizheniya i neravenstva dlya perestanovok”, Dokl. AN SSSR, 290:5 (1986), 1033–1036 | MR
[8] Babenko V. F., “Priblizhenie klassov svertok”, Sibirsk. mat. zh., 28:5 (1987), 6–21 | MR | Zbl
[9] Tikhomirov V. M., “Ob ekstremalnykh podprostranstvakh dlya klassov funktsii, zadavaemykh yadrami, ne povyshayuschimi ostsillyatsiyu”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1997, no. 4, 16–19 | Zbl
[10] Ligun A. A., “Inequalities for upper bounds of functionals”, Anal. Math., 2:1 (1976), 11–40 | DOI | MR | Zbl
[11] Vinogradov O. L., “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Probl. mat. anal., 25 (2003), 29–56 | Zbl
[12] Vinogradov O. L., “Tochnye neravenstva dlya priblizhenii klassov svertok periodicheskikh funktsii podprostranstvami sdvigov nechetnoi razmernosti”, Mat. zametki, 85:4 (2009), 569–584 | DOI | MR | Zbl
[13] Krein M. G., “O nailuchshei approksimatsii nepreryvnykh differentsiruemykh funktsii na vsei veschestvennoi osi”, Dokl. AN SSSR, 18:9 (1938), 619–623
[14] Vinogradov O. L., “Tochnye neravenstva tipa Dzheksona dlya priblizhenii klassov svertok tselymi funktsiyami konechnoi stepeni”, Algebra i analiz, 17:4 (2005), 56–111
[15] Vinogradov O. L., “Tochnye neravenstva dlya priblizhenii klassov svertok na osi kak predelnyi sluchai neravenstv dlya periodicheskikh svertok”, Sibirsk. mat. zh., 58:2 (2017), 251–269 | MR | Zbl
[16] Vinogradov O. L., Gladkaya A. V., “Neperiodicheskii splainovyi analog operatorov Akhiezera–Kreina–Favara”, Zap. nauch. semin. POMI, 440, 2015, 8–35 | MR
[17] Vinogradov O. L., “Tochnye konstanty priblizhenii klassov svertok s summiruemym yadrom prostranstvami sdvigov”, Algebra i analiz, 30:5 (2018), 112–148
[18] Buhmann M. D., “Multivariate cardinal interpolation with radial-basis functions”, Constr. Approx., 6:3 (1993), 225–255 | DOI | MR
[19] Ron A., “Introduction to shift-invariant spaces. Linear independence”, Multivariate Approximation and Applications, Cambridge Univ. Press, Cambridge, 2001, 112–151 | DOI | MR | Zbl
[20] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR
[21] Schoenberg I. J., Cardinal spline interpolation, Conf. Board Math. Sci. Reg. Conf. Ser. Appl. Math., 12, Soc. Industr. Appl. Math., Philadelphia, Pa, 1973 | MR | Zbl
[22] Magaril-Ilyaev G. G., “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Mat. sb., 182:11 (1991), 1635–1656
[23] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011 | MR
[24] Kloos T., “Zeros of the Zak transform of totally positive functions”, J. Fourier Anal. Appl., 21 (2015), 1130–1145 | DOI | MR | Zbl
[25] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977
[26] A. Zigmund, Trigonometricheskie ryady, v. 1, Mir, M., 1965
[27] Karlin S., Total positivity, v. 1, Stanford Univ. Press, Stanford, 1968 | MR | Zbl
[28] Lorenz G. G., DeVore R. A., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR
[29] Jetter K., Riemenschneider S. D., Sivakumar N., “Schoenberg's exponential Euler spline curves”, Proc. Roy. Soc. Edinburgh Sect. A, 118:1-2 (1991), 21–33 | DOI | MR | Zbl
[30] Baxter B. J. C., Sivakumar N., “On shifted cardinal interpolation by Gaussians and multiquadrics”, J. Approx. Theory, 87 (1996), 36–59 | DOI | MR | Zbl
[31] Nguen Tkhi T. Kh., “Teorema Rollya dlya differentsialnykh operatorov i nekotorye ekstremalnye zadachi teorii priblizhenii”, Dokl. AN SSSR, 295:6 (1987), 1313–1318
[32] O. L. Vinogradov, A. Yu. Ulitskaya, “Zeros of the Zak transform of averaged totally positive functions”, J. Approx. Theory, 222 (2017), 55–63 | DOI | MR | Zbl