On the invariance of Welschinger invariants
Algebra i analiz, Tome 32 (2020) no. 2, pp. 1-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some observations about original Welschinger invariants defined in the paper Invariants of real symplectic $ 4$-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), no. 1, 195-234, are collected. None of their proofs is difficult, nevertheless these remarks do not seem to have been made before. The main result is that when $ X_\mathbb{R}$ is a real rational algebraic surface, Welschinger invariants only depend on the number of real interpolated points, and on some homological data associated with  $ X_\mathbb{R}$. This strengthened invariance statement was initially proved by Welschinger. This main result follows easily from a formula relating Welschinger invariants of two real symplectic manifolds that differ by a surgery along a real Lagrangian sphere. In its turn, once one believes that such a formula may hold, its proof is a mild adaptation of the proof of analogous formulas previously obtained by the author on the one hand, and by Itenberg, Kharlamov, and Shustin on the other hand. The two aforementioned results are applied to complete the computation of Welschinger invariants of real rational algebraic surfaces, and to obtain vanishing, sign, and sharpness results for these invariants, which generalize previously known statements. Some hypothetical relationship of the present work with tropical refined invariants defined in the papers Refined curve counting with tropical geometry, Compos. Math. 152 (2016), no. 1, 115-151, and Refined broccoli invariants, J. Algebraic Geom. 28 (2019), no. 1, 1-41, is also discussed.
Keywords: real enumerative geometry, Welschinger invariants, real rational algebraic surfaces, refined invariants.
@article{AA_2020_32_2_a0,
     author = {E. Brugall\'e},
     title = {On the invariance of {Welschinger} invariants},
     journal = {Algebra i analiz},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a0/}
}
TY  - JOUR
AU  - E. Brugallé
TI  - On the invariance of Welschinger invariants
JO  - Algebra i analiz
PY  - 2020
SP  - 1
EP  - 20
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_2_a0/
LA  - en
ID  - AA_2020_32_2_a0
ER  - 
%0 Journal Article
%A E. Brugallé
%T On the invariance of Welschinger invariants
%J Algebra i analiz
%D 2020
%P 1-20
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_2_a0/
%G en
%F AA_2020_32_2_a0
E. Brugallé. On the invariance of Welschinger invariants. Algebra i analiz, Tome 32 (2020) no. 2, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a0/

[1] Arroyo A., Brugallé E., López de Medrano L., “Recursive formula for {W}elschinger invariants”, Int. Math. Res. Not. IMRN, 5 (2011), 1107–1134 | Zbl

[2] Block F., Göttsche L., “Refined curve counting with tropical geometry”, Compos. Math., 152:1 (2016), 115–151 | DOI | MR | Zbl

[3] Block F., Gathmann A., Markwig H., “Psi-floor diagrams and a Caporaso–Harris type recursion”, Israel J. Math., 191:1 (2012), 405–449 | DOI | MR | Zbl

[4] E. Brugallé, Itenberg I., Mikhalkin G., Shaw K., “Brief introduction to tropical geometry”, Proc. of the {G}ökova Geometry–Topology Conference, Gökova Geometry/Topology Conference (GGT) (Gökova, 2015), 2014, 1–75

[5] Brugallé E., Mikhalkin G., “Floor decompositions of tropical curves: the planar case”, Proc. of $15$th Gökova Geometry–Topology Conference, Gökova Geometry/Topology Conference (GGT) (Gökova, 2009), 2008, 64–90 | MR

[6] Brugallé E., Markwig H., “Deformation and tropical {H}irzebruch surfaces and enumerative geometry”, J. Algebraic Geom., 25:4 (2016), 633–702 | DOI | MR | Zbl

[7] Bousseau P., Tropical refined curve counting from higher genera and lambda classes, 2017, arXiv: 1706.0776 | MR

[8] Bousseau P., Refined floor diagrams from higher genera and lambda classes, 2019, arXiv: 1904.10311 | MR | Zbl

[9] Brugallé E., Puignau N., “Behavior of Welschinger invariants under Morse simplifications”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 147–153 | DOI | MR | Zbl

[10] Brugallé E., Puignau N., “On Welschinger invariants of symplectic $4$-manifolds”, Comment. Math. Helv., 90:4 (2015), 905–938 | DOI | MR | Zbl

[11] E. Brugallé, “Floor diagrams relative to a conic, and GW–W invariants of Del Pezzo surfaces”, Adv. Math., 279 (2015), 438–500 | DOI | MR | Zbl

[12] Brugallé E., “Surgery of real symplectic fourfolds and welschinger invariants”, J. Singularities, 17 (2018), 267–294 | MR | Zbl

[13] Blechman L., Shustin E., “Refined descendant invariants of toric surfaces”, Discrete Comput. Geom., 62:1 (2019), 180–208 | DOI | MR | Zbl

[14] Chen X., Solomon's relations for Welshinger's invariants: Examples, 2018, arXiv: 1809.08938

[15] Ding Y., Hu J., “Welschinger invariants of blow-ups of symplectic $4$-manifolds”, Rocky Mountain J. Math., 48:4 (2018), 1105–1144 | DOI | MR | Zbl

[16] Degtyarev A. I., Kharlamov V. M., “Topologicheskie svoistva veschestvennykh algebraicheskikh mnogoobrazii: du côté de chez Rokhlin”, Uspekhi mat. nauk, 55:4 (2000), 129–212 | DOI | MR | Zbl

[17] Degtyarev A., Kharlamov V., “Real rational surfaces are quasi-simple”, J. Reine Angew. Math., 551 (2002), 87–99 | MR | Zbl

[18] Georgieva P., “Open Gromov–Witten disk invariants in the presence of an anti-symplectic involution”, Adv. Math., 301 (2016), 116–160 | DOI | MR | Zbl

[19] Göttsche L., Shende V., “Refined curve counting on complex surfaces”, Geom. Topol., 18:4 (2014), 2245–2307 | DOI | MR

[20] Göttsche L., Schroeter F., “Refined broccoli invariants”, J. Algebraic Geom., 28:1 (2019), 1–41 | DOI | MR

[21] Georgieva P., Zinger A., “Real Gromov–Witten theory in all genera and real enumerative geometry: construction”, Ann. of Math. (2), 188:3 (2018), 685–752 | DOI | MR | Zbl

[22] Horev A., Solomon J., The open Gromov–Witten–Welschinger theory of blowups of the projective plane, 2012, arXiv: 1210.4034

[23] Itenberg I. V., Kharlamov V. M., Shustin E. I., “Logarifmicheskaya ekvivalentnost invariantov Velshenzhe i Gromova-Vittena”, Uspekhi mat. nauk, 59:6 (2004), 85–110 | DOI | MR | Zbl

[24] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants of real del Pezzo surfaces of degree $\geq3$”, Math. Ann., 355:3 (2013), 849–878 | DOI | MR | Zbl

[25] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants of real del {P}ezzo surfaces of degree $\geq 2$”, Internat. J. Math., 26:8 (2015), 1550060 | DOI | MR | Zbl

[26] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants revisited”, Analysis meets geometry, Trends Math., Birkhäuser/Springer, Cham, 2017, 239–260 | DOI | MR | Zbl

[27] Itenberg I., Mikhalkin G., “On Block–Göttsche multiplicities for planar tropical curves”, Int. Math. Res. Not. IMRN, 23 (2013), 5289–5320 | DOI | MR | Zbl

[28] Ionel E.-N., Parker T. H., “The symplectic sum formula for Gromov–Witten invariants”, Ann. of Math. (2), 159:3 (2004), 935–1025 | DOI | MR | Zbl

[29] Li J., “A degeneration formula of GW-invariants”, J. Differential Geom., 60:2 (2002), 199–293 | DOI | MR | Zbl

[30] Li J., “Lecture notes on relative GW-invariants”, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 41–96 | MR | Zbl

[31] Li A., Ruan Y., “Symplectic surgery and Gromov–Witten invariants of Calabi-Yau $3$-folds”, Invent. Math., 145:1 (2001), 151–218 | DOI | MR | Zbl

[32] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377 | DOI | MR | Zbl

[33] Mikhalkin G., “Quantum indices and refined enumeration of real plane curves”, Acta Math., 219:1 (2017), 135–180 | DOI | MR | Zbl

[34] Nicaise J., Payne S., Schroeter F., “Tropical refined curve counting via motivic integration”, Geom. Topol., 22:6 (2018), 3175–3234 | DOI | MR | Zbl

[35] Shustin E., “On higher genus Welschinger invariants of del pezzo surfaces”, Intern. Math. Res. Not. IMRN, 16 (2015), 6907–6940 | DOI | MR | Zbl

[36] Tehrani M. F., Zinger A., On symplectic sum formulas in Gromov–Witten theory, 2014, arXiv: 1404.1898 | MR

[37] Welschinger J. Y., “Invariants of real symplectic $4$-manifolds and lower bounds in real enumerative geometry”, Invent. Math., 162:1 (2005), 195–234 | DOI | MR | Zbl

[38] Welschinger J. Y., Optimalité, congruences et calculs d'invariants des variétés symplectiques réelles de dimension quatre, 2007, arXiv: 0707.4317

[39] Welschinger J. Y., “Open Gromov–Witten invariants in dimension four”, J. Symplectic Geom., 13:4 (2015), 1075–1100 | DOI | MR | Zbl