Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_2_a0, author = {E. Brugall\'e}, title = {On the invariance of {Welschinger} invariants}, journal = {Algebra i analiz}, pages = {1--20}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_2_a0/} }
E. Brugallé. On the invariance of Welschinger invariants. Algebra i analiz, Tome 32 (2020) no. 2, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2020_32_2_a0/
[1] Arroyo A., Brugallé E., López de Medrano L., “Recursive formula for {W}elschinger invariants”, Int. Math. Res. Not. IMRN, 5 (2011), 1107–1134 | Zbl
[2] Block F., Göttsche L., “Refined curve counting with tropical geometry”, Compos. Math., 152:1 (2016), 115–151 | DOI | MR | Zbl
[3] Block F., Gathmann A., Markwig H., “Psi-floor diagrams and a Caporaso–Harris type recursion”, Israel J. Math., 191:1 (2012), 405–449 | DOI | MR | Zbl
[4] E. Brugallé, Itenberg I., Mikhalkin G., Shaw K., “Brief introduction to tropical geometry”, Proc. of the {G}ökova Geometry–Topology Conference, Gökova Geometry/Topology Conference (GGT) (Gökova, 2015), 2014, 1–75
[5] Brugallé E., Mikhalkin G., “Floor decompositions of tropical curves: the planar case”, Proc. of $15$th Gökova Geometry–Topology Conference, Gökova Geometry/Topology Conference (GGT) (Gökova, 2009), 2008, 64–90 | MR
[6] Brugallé E., Markwig H., “Deformation and tropical {H}irzebruch surfaces and enumerative geometry”, J. Algebraic Geom., 25:4 (2016), 633–702 | DOI | MR | Zbl
[7] Bousseau P., Tropical refined curve counting from higher genera and lambda classes, 2017, arXiv: 1706.0776 | MR
[8] Bousseau P., Refined floor diagrams from higher genera and lambda classes, 2019, arXiv: 1904.10311 | MR | Zbl
[9] Brugallé E., Puignau N., “Behavior of Welschinger invariants under Morse simplifications”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 147–153 | DOI | MR | Zbl
[10] Brugallé E., Puignau N., “On Welschinger invariants of symplectic $4$-manifolds”, Comment. Math. Helv., 90:4 (2015), 905–938 | DOI | MR | Zbl
[11] E. Brugallé, “Floor diagrams relative to a conic, and GW–W invariants of Del Pezzo surfaces”, Adv. Math., 279 (2015), 438–500 | DOI | MR | Zbl
[12] Brugallé E., “Surgery of real symplectic fourfolds and welschinger invariants”, J. Singularities, 17 (2018), 267–294 | MR | Zbl
[13] Blechman L., Shustin E., “Refined descendant invariants of toric surfaces”, Discrete Comput. Geom., 62:1 (2019), 180–208 | DOI | MR | Zbl
[14] Chen X., Solomon's relations for Welshinger's invariants: Examples, 2018, arXiv: 1809.08938
[15] Ding Y., Hu J., “Welschinger invariants of blow-ups of symplectic $4$-manifolds”, Rocky Mountain J. Math., 48:4 (2018), 1105–1144 | DOI | MR | Zbl
[16] Degtyarev A. I., Kharlamov V. M., “Topologicheskie svoistva veschestvennykh algebraicheskikh mnogoobrazii: du côté de chez Rokhlin”, Uspekhi mat. nauk, 55:4 (2000), 129–212 | DOI | MR | Zbl
[17] Degtyarev A., Kharlamov V., “Real rational surfaces are quasi-simple”, J. Reine Angew. Math., 551 (2002), 87–99 | MR | Zbl
[18] Georgieva P., “Open Gromov–Witten disk invariants in the presence of an anti-symplectic involution”, Adv. Math., 301 (2016), 116–160 | DOI | MR | Zbl
[19] Göttsche L., Shende V., “Refined curve counting on complex surfaces”, Geom. Topol., 18:4 (2014), 2245–2307 | DOI | MR
[20] Göttsche L., Schroeter F., “Refined broccoli invariants”, J. Algebraic Geom., 28:1 (2019), 1–41 | DOI | MR
[21] Georgieva P., Zinger A., “Real Gromov–Witten theory in all genera and real enumerative geometry: construction”, Ann. of Math. (2), 188:3 (2018), 685–752 | DOI | MR | Zbl
[22] Horev A., Solomon J., The open Gromov–Witten–Welschinger theory of blowups of the projective plane, 2012, arXiv: 1210.4034
[23] Itenberg I. V., Kharlamov V. M., Shustin E. I., “Logarifmicheskaya ekvivalentnost invariantov Velshenzhe i Gromova-Vittena”, Uspekhi mat. nauk, 59:6 (2004), 85–110 | DOI | MR | Zbl
[24] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants of real del Pezzo surfaces of degree $\geq3$”, Math. Ann., 355:3 (2013), 849–878 | DOI | MR | Zbl
[25] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants of real del {P}ezzo surfaces of degree $\geq 2$”, Internat. J. Math., 26:8 (2015), 1550060 | DOI | MR | Zbl
[26] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariants revisited”, Analysis meets geometry, Trends Math., Birkhäuser/Springer, Cham, 2017, 239–260 | DOI | MR | Zbl
[27] Itenberg I., Mikhalkin G., “On Block–Göttsche multiplicities for planar tropical curves”, Int. Math. Res. Not. IMRN, 23 (2013), 5289–5320 | DOI | MR | Zbl
[28] Ionel E.-N., Parker T. H., “The symplectic sum formula for Gromov–Witten invariants”, Ann. of Math. (2), 159:3 (2004), 935–1025 | DOI | MR | Zbl
[29] Li J., “A degeneration formula of GW-invariants”, J. Differential Geom., 60:2 (2002), 199–293 | DOI | MR | Zbl
[30] Li J., “Lecture notes on relative GW-invariants”, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 41–96 | MR | Zbl
[31] Li A., Ruan Y., “Symplectic surgery and Gromov–Witten invariants of Calabi-Yau $3$-folds”, Invent. Math., 145:1 (2001), 151–218 | DOI | MR | Zbl
[32] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377 | DOI | MR | Zbl
[33] Mikhalkin G., “Quantum indices and refined enumeration of real plane curves”, Acta Math., 219:1 (2017), 135–180 | DOI | MR | Zbl
[34] Nicaise J., Payne S., Schroeter F., “Tropical refined curve counting via motivic integration”, Geom. Topol., 22:6 (2018), 3175–3234 | DOI | MR | Zbl
[35] Shustin E., “On higher genus Welschinger invariants of del pezzo surfaces”, Intern. Math. Res. Not. IMRN, 16 (2015), 6907–6940 | DOI | MR | Zbl
[36] Tehrani M. F., Zinger A., On symplectic sum formulas in Gromov–Witten theory, 2014, arXiv: 1404.1898 | MR
[37] Welschinger J. Y., “Invariants of real symplectic $4$-manifolds and lower bounds in real enumerative geometry”, Invent. Math., 162:1 (2005), 195–234 | DOI | MR | Zbl
[38] Welschinger J. Y., Optimalité, congruences et calculs d'invariants des variétés symplectiques réelles de dimension quatre, 2007, arXiv: 0707.4317
[39] Welschinger J. Y., “Open Gromov–Witten invariants in dimension four”, J. Symplectic Geom., 13:4 (2015), 1075–1100 | DOI | MR | Zbl