Cobordism-framed correspondences and the Milnor $ K$-theory
Algebra i analiz, Tome 32 (2020) no. 1, pp. 244-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

The 0th cohomology group is computed for a complex of groups of cobordism-framed correspondences. In the case of ordinary framed correspondences, an analogous computation was completed by A. Neshitov in his paper "Framed correspondences and the Milnor-Witt $ K$-theory". Neshitov's result is, at the same time, a computation of the homotopy groups $ \pi _{i,i}(S^0)(\mathop {Spec}(k))$, and the present work might be used subsequently as a basis for computing the homotopy groups $ \pi _{i,i}(MGL_{\bullet })(\mathop {Spec}(k))$ of the spectrum $ MGL_{\bullet }$.
Keywords: framed correspondences, $A^1$-homotopy theory, algebraic cobordisms, Milnor $K$-theory.
@article{AA_2020_32_1_a9,
     author = {A. Tsybyshev},
     title = {Cobordism-framed correspondences and the {Milnor} $ K$-theory},
     journal = {Algebra i analiz},
     pages = {244--264},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a9/}
}
TY  - JOUR
AU  - A. Tsybyshev
TI  - Cobordism-framed correspondences and the Milnor $ K$-theory
JO  - Algebra i analiz
PY  - 2020
SP  - 244
EP  - 264
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_1_a9/
LA  - ru
ID  - AA_2020_32_1_a9
ER  - 
%0 Journal Article
%A A. Tsybyshev
%T Cobordism-framed correspondences and the Milnor $ K$-theory
%J Algebra i analiz
%D 2020
%P 244-264
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_1_a9/
%G ru
%F AA_2020_32_1_a9
A. Tsybyshev. Cobordism-framed correspondences and the Milnor $ K$-theory. Algebra i analiz, Tome 32 (2020) no. 1, pp. 244-264. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a9/

[1] Bass H., Tate J., “The Milnor ring of a global field”, “Classical” algebraic K-theory and connections with arithmetic, Algebraic K-theory. II, Proc. Conf. (Seattle, Wash., Battelle Memorial Inst., 1972), Lecture Notes in Math., 342, Springer, Berlin, 1973, 349–446 | MR

[2] Neshitov A., “Framed correspondences and the Milnor–Witt $K$-theory”, J. Inst. Math. Jussieu, 17:4 (2018), 823–852 | DOI | MR | Zbl

[3] Garkusha G., Panin I., Framed motives of algebraic varieties (after V. Voevodsky), 2014, arXiv: 1409.4372 [math.KT]

[4] Voevodsky V., Notes on framed correspondences, unpublished, 2001 math.ias.edu/vladimir/files/framed.pdf

[5] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl

[6] Vakil R., The rising sea: Foundations of algebraic geometry, http://math.stanford.edu/ṽakil/216blog/FOAGnov1817public.pdf | MR

[7] Garkusha G., Neshitov A., Fibrant resolutions for motivic Thom spectra, 20 Apr. 2018, arXiv: 1804.07621 [math.AG]