Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_1_a9, author = {A. Tsybyshev}, title = {Cobordism-framed correspondences and the {Milnor} $ K$-theory}, journal = {Algebra i analiz}, pages = {244--264}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a9/} }
A. Tsybyshev. Cobordism-framed correspondences and the Milnor $ K$-theory. Algebra i analiz, Tome 32 (2020) no. 1, pp. 244-264. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a9/
[1] Bass H., Tate J., “The Milnor ring of a global field”, “Classical” algebraic K-theory and connections with arithmetic, Algebraic K-theory. II, Proc. Conf. (Seattle, Wash., Battelle Memorial Inst., 1972), Lecture Notes in Math., 342, Springer, Berlin, 1973, 349–446 | MR
[2] Neshitov A., “Framed correspondences and the Milnor–Witt $K$-theory”, J. Inst. Math. Jussieu, 17:4 (2018), 823–852 | DOI | MR | Zbl
[3] Garkusha G., Panin I., Framed motives of algebraic varieties (after V. Voevodsky), 2014, arXiv: 1409.4372 [math.KT]
[4] Voevodsky V., Notes on framed correspondences, unpublished, 2001 math.ias.edu/vladimir/files/framed.pdf
[5] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl
[6] Vakil R., The rising sea: Foundations of algebraic geometry, http://math.stanford.edu/ṽakil/216blog/FOAGnov1817public.pdf | MR
[7] Garkusha G., Neshitov A., Fibrant resolutions for motivic Thom spectra, 20 Apr. 2018, arXiv: 1804.07621 [math.AG]