Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables
Algebra i analiz, Tome 32 (2020) no. 1, pp. 187-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Maxwell operator is studied in a three-dimensional cylinder whose cross-section is a simply connected bounded domain with Lipschitz boundary. It is assumed that the coefficients of the operator are scalar functions depending on the longitudinal variable only. We show that the square of such an operator is unitarily equivalent to the orthogonal sum of four scalar elliptic operators of second order. If the coefficients are periodic along the axis of the cylinder, the spectrum of the Maxwell operator is absolutely continuous.
Keywords: Maxwell operator, simply connected cylinder, absolute continuity of the spectrum.
@article{AA_2020_32_1_a7,
     author = {N. D. Filonov},
     title = {Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables},
     journal = {Algebra i analiz},
     pages = {187--207},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a7/}
}
TY  - JOUR
AU  - N. D. Filonov
TI  - Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables
JO  - Algebra i analiz
PY  - 2020
SP  - 187
EP  - 207
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_1_a7/
LA  - ru
ID  - AA_2020_32_1_a7
ER  - 
%0 Journal Article
%A N. D. Filonov
%T Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables
%J Algebra i analiz
%D 2020
%P 187-207
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_1_a7/
%G ru
%F AA_2020_32_1_a7
N. D. Filonov. Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables. Algebra i analiz, Tome 32 (2020) no. 1, pp. 187-207. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a7/

[1] Birman M. Sh., Solomyak M. Z., “Samosopryazhennyi operator Maksvella v proizvolnykh oblastyakh”, Algebra i analiz, 1:1 (1989), 96–110

[2] Dunaev K. O., Operator Maksvella s periodicheskimi kharakteristikami sredy, diplomnaya rabota, Fiz. fak. LGU, L., 1989

[3] Filonov N., “Ob odnom neravenstve na sobstvennye chisla zadach Dirikhle i Neimana dlya operatora Laplasa”, Algebra i analiz, 16:2 (2004), 172–176 | MR

[4] Filonov N., “Operator Maksvella v tsilindre c koeffitsientami, ne zavisyaschimi ot prodolnoi peremennoi”, Algebra i analiz, 30:3 (2018), 210–249

[5] Kachkovskii I., Filonov N., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v mnogomernom tsilindre”, Algebra i analiz, 21:1 (2009), 133–152 | MR

[6] Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, Zap. nauch. semin. POMI, 318, 2004, 298–307 | MR | Zbl

[7] Prokhorov A., Filonov N., “Operator Maksvella s periodicheskimi koeffitsientami v tsilindre”, Algebra i analiz, 29:6 (2017), 182–196

[8] Tikhomirov M., Filonov N., “Absolyutnaya nepreryvnost “chetnogo” periodicheskogo operatora Shredingera s negladkimi koeffitsientami”, Algebra i analiz, 16:3 (2004), 201–210

[9] Friedlander L., “Some inequalities between Dirichlet and Neumann eigenvalues”, Arch. Rational Mech. Anal., 116:2 (1991), 153–160 | DOI | MR | Zbl

[10] Gérard G., Nier F., “The Mourre theory for analytically fibered operators”, J. Funct. Anal., 152:1 (1998), 202–219 | DOI | MR | Zbl

[11] Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl

[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR