Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2020_32_1_a5, author = {G. K. Ryabov}, title = {On {Cayley} representations of finite graphs over {Abelian} $ p$-groups}, journal = {Algebra i analiz}, pages = {94--120}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a5/} }
G. K. Ryabov. On Cayley representations of finite graphs over Abelian $ p$-groups. Algebra i analiz, Tome 32 (2020) no. 1, pp. 94-120. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a5/
[1] Veisfeiler B., Leman A., “Privedenie grafa k kanonicheskomu vidu i voznikayuschaya pri etom algebra”, NTI. Ser. 2. Inform. analiz, 1968, no. 9, 12–16
[2] Evdokimov S., Ponomarenko I., “Raspoznavanie i proverka izomorfizma tsirkulyantnykh grafov za polinomialnoe vremya”, Algebra i analiz, 15:6 (2003), 1–34
[3] Evdokimov S., Ponomarenko I., “Shurovost $S$-kolets nad tsiklicheskoi gruppoi i obobschennoe spletenie grupp perestanovok”, Algebra i analiz, 24:3 (2012), 84–127
[4] Muzychuk M., Ponomarenko I., “O $2$-gruppakh Shura”, Zap. nauch. semin. POMI, 435, 2015, 113–162
[5] Ryabov G., “Ob otdelimosti kolets Shura nad abelevymi $p$-gruppami”, Algebra i logika, 57:1 (2018), 73–101 | MR | Zbl
[6] Babai L., “Isomorphism problem for a class of point symmetric structures”, Acta Math. Acad. Sci. Hungar., 29:3-4 (1977), 329–336 | DOI | MR | Zbl
[7] Chen G., Ponomarenko I., Lectures on coherent configurations, 2019 http://www.pdmi.ras.ru/ĩnp/ccNOTES.pdf
[8] Evdokimov S., Ponomarenko I., “Permutation group approach to association schemes”, European J. Combin., 30:6 (2009), 1456–1476 | DOI | MR | Zbl
[9] Evdokimov S., Muzychuk M., Ponomarenko I., “A family of permutation groups with exponentially many non-conjugated regular elementary abelian subgroups”, Algebra i analiz, 29:4 (2017), 46–53 | MR
[10] Klin M., Pech C., Reichard S., COCO2P — a GAP package, 0.14, 07.02.2015 http://www.math.tu-dresden.de/p̃ech/COCO2P
[11] Hanaki A., Miyamoto I., Classification of association schemes with small number of vertices, 2016 http://math.shinshu-u.ac.jp/h̃anaki/as/
[12] Muzychuk M., “On the isomorphism problem for cyclic combinatorial objects”, Discrete Math., 197/198 (1999), 589–606 | DOI | MR | Zbl
[13] Muzychuk M., “A solution of the isomorphism problem for circulant graphs”, Proc. Lond. Math. Soc. (3), 88:1 (2004), 1–41 | DOI | MR | Zbl
[14] Nedela R., Ponomarenko I., Recognizing and testing isomorphism of Cayley graphs over an abelian group of order $4p$ in polynomial time, 2017, 22 pp., arXiv: 1706.06145 [math.CO] | MR
[15] Ryabov G., “On Schur $p$-groups of odd order”, J. Algebra Appl., 16:3 (2017), 1750045 | DOI | MR | Zbl
[16] Seress A., Permutation group algorithms, Cambridge Tracts Math., 152, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[17] Weisfeiler B. (ed.), On construction and identification of graphs, Lecture Notes in Math., 558, Springer-Verlag, Berlin etc., 1976 | DOI | MR | Zbl